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Abstract

We address the problem of selecting portfolios which maximize the ratio of the av-

erage excess return to the standard deviation, among all those portfolios which comprise

at most a pre-speci®ed number, k, of securities. Under the assumptions of constant

pairwise correlations and no short-selling, we argue that the simple ranking procedure

of Elton, Gruber, and Padberg e�ectively solves the problem for all values of k, and that

as a function of k, the optimal ratio increases at a decreasing rate. We also clarify why

further generalization or extension of our results to other situations is improba-

ble. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

One basic implication of modern portfolio theory is that investors hold well-
diversi®ed portfolios. However, there is empirical evidence that individual in-
vestors typically hold only a small number of securities. 1 Market imperfections
such as ®xed transaction costs provide one explanation for the prevalence of
undiversi®ed portfolios. Also, a small investor who chooses to invest in only a
limited number of securities can devote more attention to the individual be-
havior of those securities and their mean±variance characteristics. In fact, there
is evidence (e.g., Evans and Archer, 1968; Fisher and Lorie, 1970; Jacob, 1974)
that diversi®cation beyond 8±10 securities may not be worthwhile provided
these securities are chosen not randomly but through a systematic, optimum-
seeking procedure. Citing Szeg�o (1980), Sengupta and Sfeir (1985) observe that
the variance±covariance matrix of the returns on the securities in a portfolio
that has a large number of securities tends to conceal signi®cant singularities or
near-singularities. They suggest that it may therefore be super¯uous to enlarge
the number of securities in a portfolio beyond a limit.

The above discussion underscores the importance of the general problem of
selecting mean±variance e�cient portfolios under limited diversi®cation, i.e.,
an upper limit on the number of securities in the portfolio. Nevertheless, it has
not received much attention in the literature. Mao (1970) and Jacob (1974)
formally address the problem but develop their selection procedures under
somewhat restrictive assumptions and rather high degrees of approximation. 2

For the problem of determining mean±variance e�cient portfolios under the
single index model (Sharpe, 1963) of security returns and an upper limit on the
number of stocks, Faaland (1974) develops an algorithm based on integer
programming, which is bettered by the implicit enumeration algorithm of Blog
et al. (1983). Cooper and Farhangian (1982) develop a dynamic programming
approach for an extension of this problem that incorporates ®xed costs of
transaction.

1 Conine et al. (1989, footnote 2, pp. 1004±1005) cite several studies that provide empirical

evidence that the majority of individual investors in the U.S. hold highly undiversi®ed portfolios.

Bark (1991) states that one reason for the inadequacy of the Sharpe±Lintner±Mossin capital asset

pricing model in the Korean stock market is that the portfolios of Korean investors are also highly

undiversi®ed.
2 For instance, to compute the number of securities that optimally trades-o� diversi®cation

against (®xed) transaction costs, Mao assumes that both the average excess return over the riskless

rate and the standard deviation of the return are the same for all the securities in the portfolio.

Further, for selecting the best portfolio among those that comprise a pre-speci®ed number of

securities, he assumes that for all of these portfolios, the nonsystematic risk is fully diversi®ed away.

Jacob assumes that the weights for the securities in the investorÕs portfolio are all equal to each

other. She also linearizes portfolio risk in terms of the weights.
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Assuming that the capital asset pricing model (Sharpe, 1964; Lintner, 1965;
Mossin, 1966) holds, Brennan (1975) presents an algorithm for determining the
optimal number of securities under ®xed transaction costs. However, the va-
lidity of that assumption in the presence of ®xed transaction costs has been
questioned (Patel and Subrahmanyam, 1982). Patel and Subrahmanyam (1982)
develop an e�cient algorithm for the problem under the assumption that the
correlation coe�cient is the same for all pairs of securities (Elton and Gruber,
1995, pp. 168±169). Aneja et al. (1989) show how the average pairwise corre-
lation coe�cient can be e�ciently estimated using a portfolio approach.

We are not aware of more recent algorithms for the problem or any of its
variants. Nevertheless, simple ranking procedures akin to the well-known EGP
algorithms (Elton et al., 1976, 1977, 1978) continue to be developed for se-
lecting mean±variance e�cient portfolios in other contexts such as restricted
short-selling (Alexander, 1993, 1995) and institutional norms for short-selling
(Kwan, 1995).

In this note, we consider the problem of selecting portfolios which maximize
the ratio of the average excess return over the riskless rate to the standard
deviation, among all those portfolios which comprise at most a pre-speci®ed
number, k, of securities from among the n securities that comprise the universe.
We de®ne a k-optimal portfolio as one that maximizes the ratio of the average
excess return to the standard deviation over all portfolios that comprise at
most k securities �16 k6 n�. Then, it is clear that the well-known EGP algo-
rithms essentially ®nd only the n-optimal portfolio for each of various cases
(viz., short-selling/no short-selling and single-index/constant correlations, etc.).

The theory of computational complexity implies that the problem of ®nding
the k-optimal portfolios for all the values of k (i.e., from 1 through to n) is
unlikely to be e�ciently solvable under the single-index model of stock returns
(Blog et al., 1983). However, we formally argue that under the assumptions of
constant pairwise correlations and no short-selling, the associated EGP algo-
rithm, with a very minor modi®cation, solves the problem for all values of k,
and not just for k� n. Thus, we show that under the assumption of no short-
selling and under minimal and plausible 3 assumptions about the variance±
covariance matrix of security returns, it is extremely simple to select portfolios
that are provably optimal among all those that comprise at most a given
number, k, of securities from the universe.

We also establish that as a function of k, the optimal ratio of the average
excess return to the standard deviation increases at a decreasing rate. Thus, we
provide yet another analytical argument that the marginal bene®t from di-
versi®cation decreases with the number of securities in the portfolio. We

3 The reader is referred to the discussion by Elton and Gruber (1995, pp. 168±169) of the

empirical validation of the constant correlation assumption.
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venture that this argument is stronger than those in the published literature
because it is based on portfolios that are optimal under a varying upper limit on
the number of securities and under minimal assumptions about the correlation
structure of security returns.

The problem of determining the optimal weights in a portfolio that com-
prises a given subset of securities in the universe can be easily solved for a
variety of situations (see Elton and Gruber, 1995). However, the problem of
determining an optimal portfolio (and associated weights) that comprises at
most a given number of securities from the universe is generally much harder ±
that is why we believe the above results are noteworthy. Thus, under the single-
index model of stock returns, the former problem is easily solved by a simple
ranking (EGP) algorithm, while as mentioned earlier, the theory of computa-
tional complexity suggests that an e�cient algorithm for the latter problem is
unlikely.

The note is organized as follows. In Section 2, we model the problem for-
mally. In Section 3, we present the main results. Section 4 illustrates our
®ndings on an example. Our conclusions are contained in Section 5.

2. The model

We use the following notation:

For their algorithm, Elton et al. (1976) do not require p to be non-negative.
However, for the results of this paper, such an assumption is needed. Below, we
defend this assumption.

Let seq denote the standard deviation of the return on an equally-weighted
portfolio that comprises securities, 1; . . . ;m. For the sake of simplicity, and only
for the sake of the present argument, assume that sj� s for all j in N. Then, in
the manner of Elton and Gruber (1995, p. 60), we can show that

n the number of securities in the universe.
N the set of securities in the universe; N � f1; . . . ; ng.
k a pre-speci®ed upper limit on the number of securities in the portfolio

�16 k6 n�.
xi the weight of security i, i � 1; . . . ; n (for all i, xi P 0).
R the rate of return on the riskless asset.
Ri the expected rate of return on security i, i � 1; . . . ; n.
si the standard deviation of the rate of return on security i, i � 1; . . . ; n.
bi the ratio of the average excess return to the standard deviation of

security i, i � 1; . . . ; n; thus, bi � �Ri ÿ R�=si.
p an estimate of the average correlation coe�cient of any pair of

security returns (we assume that p is non-negative).
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�seq�2 � 1

m

� �
s2 � mÿ 1

m

� �
ps2 � 1� mÿ 1� �p

m

� �
s2: �1�

Eq. (1) implies that if p is negative, then for su�ciently large values of m,
�seq�2 would become negative, which is absurd! For this reason, we assert that
the assumption of non-negativity for p is mild.

Under the assumptions of constant correlation and no short-selling, the
investor's problem may be formulated as follows:

maximize

Pn
i�1�Ri ÿ R�xi����������������������������������������������������������������Pn

i�1 s2
i x2

i � p
Pn

i�1

Pn
j�1
j 6�i

sisjxixj

r
such that

xi P 0 for i � 1; . . . ; n; and at most k of fxi : i � 1; . . . ; ng are positive:

Let F be an arbitrary subset of N, and let w(F) denote the maximum ratio of
the average excess return to the standard deviation that is realizable by a
portfolio which comprises only securities in F; formally, w(F) is the maximum
of P

i2F �Ri ÿ R�xi�����������������������������������������������������������������P
i2F s2

i x2
i � p

P
i2F

P
j2F
j 6�i

sisjxixj

r
such that

xi P 0 for all i in F :

If (�) is a subset of N, then we let |(�)| denote the cardinality of (�). Then, the
problem of our interest may be reformulated as

P : maximize w�F �

over all F � N such that jF j6 k:

3. The results

Our algorithm for solving P and the arguments for its validity are based on a
procedure, GET-PORTFOLIO. If F denotes an arbitrary subset of N, then
GET-PORTFOLIO returns a portfolio comprising a subset of securities from
F; we refer to this subset as SF .

Without loss of generality, we assume the securities in the universe are
numbered in descending order of fbig; thus, b1 P b2 P � � � P bn. If F denotes
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an arbitrary subset of N, then for t � 1; . . . ; jF j, let i�t; F � denote the security
with the tth greatest value of b among the securities in F. (We can always de®ne
fi�t; F � : t � 1; . . . ; jF jg such that i�1; F � < i�2; F � < � � � < i�jF j; F �.)

3.1. GET-PORTFOLIO

Input: F (an arbitrary subset of N).
Output: A portfolio comprising a subset of securities from F, namely, SF .

1. If bi�1;F �6 0, then set t � 0 and go to step 4; else, initialize t to 1.
2. If t P jF j or bi�t�1;F �6 p�Pt

u�1 bi�u;F ��=��t ÿ 1�p � 1�; then go to step 4; else,
increment t by 1.

3. Go to step 2.
4. Set SF � fi�u; F � : u � 1; . . . ; tg.

Construct the weights fxi : i 2 F g as follows:

for u � 1; . . . t; xi�u;F � is in proportion to
1

si�u;F �

� �
bi�u;F �

�
ÿ p

Pt
v�1 bi�v;F �

�t ÿ 1�p � 1

�
;

�2�

for u � t � 1; . . . ; jF j; xi�u;F � :� 0: �3�

The following proposition validates GET-PORTFOLIO.

Proposition 1. If F denotes an arbitrary subset of N, then

w�F � :�

����������������������������������������������������������������������������
1

1ÿ p

� � X
i2SF

b2
i ÿ

p
P
i2SF

bi

 !2

p�jSF j ÿ 1� � 1

0BBBBB@

1CCCCCA

vuuuuuuuut : �4�

Further, the portfolio that attains w(F) is given by Eqs. (2) and (3).

The reader is referred to Elton and Gruber (1995, pp. 205±206) for a proof
of Proposition 1; when F � N , GET-PORTFOLIO is precisely the EGP al-
gorithm that is associated with the constant correlation assumption and no
short-selling (Elton et al., 1976; Elton and Gruber, 1995, pp. 195±197). As
Elton and Gruber (1995) note, step 2 in the procedure represents the search for
the optimal cut-off value for the ratio of excess return to standard deviation.
Thus, those securities in F with a ratio that is greater than the cut-o� have
positive weights, while those securities in F with a ratio that is not greater than
the cut-o� have zero weights.

1660 J.K. Sankaran, A.A. Patil / Journal of Banking & Finance 23 (1999) 1655±1666



If bi6 0 for all i � 1 . . . n, then it is optimal to invest in none of the n se-
curities. Hence, to avoid trivialities, in the rest of the note, we assume that
b1 > 0.

The following proposition is the key result that underlies our algorithm for
P.

Proposition 2. Let F be a subset of N containing m �26m6 n� securities such
that SF � F . Let L denote the largest-numbered security in F. (Thus, L has the
smallest value of b among all the securities in F.) Let j be a security which is not in
F such that j < L. Then, w�F [ fjg n fLg�P w�F �.

The proofs of this proposition and of the rest of the results of the note
(except Proposition 4) are presented in Sankaran and Patil (1998).

Proposition 2 has an important corollary. We recall to the reader that a
k-optimal portfolio is de®ned as one which maximizes the ratio of the average
excess return to the standard deviation, over all portfolios that comprise at
most k securities �k P 2�.

Corollary 3. There is a k-optimal portfolio which comprises securities f1; . . . ; sg
for some s6 k. Further, GET-PORTFOLIO finds such a portfolio when F is
defined as f1; . . . ; kg.

Corollary 3 implies that the following algorithm ®nds the k-optimal port-
folio for all values of k.
1. Initialize k as 2. The 1-optimal portfolio comprises only security 1.
2. If bk 6 p�Pkÿ1

j�1 bj=�k ÿ 2�p � 1�; then go to step 4.
3. The k-optimal portfolio comprises securities 1 to k and for i � 1; . . . ; k, the

optimal weight of security i is proportional to �1=si��bi ÿ p�Pk
j�1 bj�=

��k ÿ 1�p � 1��. Increment k by 1. If k6 n, go to step 2.
4. Set K as k ÿ 1 and stop; for all k > K, the k-optimal portfolio is identical to

the K-optimal portfolio.
Note that the above procedure is the same as the EGP algorithm except for

the explicit computation of the optimal weights in step 3 for each value of k.
Thus, although the EGP algorithm is just the same as setting F � N and ex-
ecuting GET-PORTFOLIO, in the process of execution, it effectively ®nds the
k-optimal portfolio for all values of k.

Now, for k � 1; . . . ;K, let W(k) denote the ratio of the average excess return
to the standard deviation of the k-optimal portfolio; then

W �k� �

�����������������������������������������������������������������������
1

1ÿ p

� � Xk

i�1

b2
i ÿ

p
Pk

i�1 bi

� �2

�k ÿ 1�p � 1

0B@
1CA

vuuuut :
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The following proposition implies that the marginal bene®t from diversi®-
cation decreases with the number of securities in the portfolio. It is proved in
the appendix.

Proposition 4. For k � 2; . . . ;K ÿ 1, W �k� ÿ W �k ÿ 1� > W �k � 1� ÿ W �k�.

4. An example

We illustrate our results on an abridged version of the example that Elton
and Gruber (1995) use to illustrate the EGP algorithm for the constant cor-
relation case. We assume that p � 0:5. Table 1 presents the rest of the data and
Table 2 presents the results of the algorithm. As described on p. 196 of Elton
and Gruber (1995), K � 3. Hence, for k > 3, the k-optimal portfolio is the
same as the 3-optimal portfolio.

Through Table 2, we note that the marginal bene®t of adding a second
security, which is 0.718, is greater than the marginal bene®t of adding a third
security, namely 0.085 ± this is only to be expected owing to Proposition 4.

5. Discussion and conclusion

In this note, we have addressed the problem of selecting mean±variance
e�cient portfolios under limited diversi®cation. Speci®cally, under the

Table 1

Data to illustrate the algorithm for ®nding the k-optimal portfolio for all values of k

Security number Excess return Standard deviation Excess return to

standard deviation

1 24 3 8.0

2 14 2 7.0

3 24 4 6.0

4 30 6 5.0

5 9 2 4.5

Table 2

The various k-optimal portfoliosa

k Securities in the k-optimal

portfolio

Optimal weights of the

securities in the k-optimal

portfolio

Excess return to standard

deviation in the k-optimal

portfolio

1 1 1 8

2 1, 2 0.5, 0.5 8.718

3 1, 2, 3 0.463, 0.442, 0.095 8.803

a For k > 3, the k-optimal portfolio is the same as the 3-optimal portfolio.
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assumptions of constant pairwise correlations and no short-selling, we have
examined the problem of selecting portfolios which maximize the ratio of the
average excess return to standard deviation, among all those portfolios which
comprise at most a given number, k, of securities from the universe. We have
formally demonstrated that the associated EGP algorithm e�ectively solves the
problem for all values of k, and that the marginal bene®t from diversi®cation
decreases with the number of securities.

Given that an e�cient algorithm for the problem is unlikely under the
single-index model of stock returns, one is naturally tempted to examine
whether the results of this note extend to the case when all pairwise correlations
are constant and short-selling is allowed. As it turns out, one can follow the
reasoning of Patel and Subrahmanyam (1982, Theorem 1) and show that in
this case, the optimal set of securities for investment in a k-optimal portfolio is
of the form f1; 2; . . . ; uk ÿ 1; uk; lk; lk � 1; . . . ; ng where uk � nÿ lk � 1 � k. 4

In the case when all pairwise correlations are the same and short-selling is
not allowed, the results are very strong largely because the family of k-optimal
portfolios is nested, i.e., for all k, the set of securities in a (k + 1)-optimal
portfolio contains those in a k-optimal portfolio. It would appear from The-
orem 2 of Patel and Subrahmanyam (1982) that this is also true when all
pairwise correlations are constant and short-selling is allowed, namely, that for
all k, either uk�1 � uk � 1 (and lk�1 � lk� or uk�1 � uk (and lk�1 � lk ÿ 1).
Unfortunately, however, the proof of that theorem is invalidated by a very
slight algebraic error; in the last inequality on p. 308 of Patel and Subrah-
manyam (1982), the term ``(mÿ2)'' is incorrectly used in place of ``(mÿ1)''.

The upshot of the above discussion is that when pairwise correlations are
constant and short-selling is allowed, for given k, we can still ®nd the k-optimal
portfolio by ®rst evaluating the maximum ratio of excess return to standard
deviation for each set of securities of the form f1; . . . ; u; u� nÿ k � 1; . . . ; ng
(where 06 u6 k) and then picking the best of these k + 1 sets. However, unlike
the case when short-selling is disallowed, we can neither claim that the EGP
algorithm e�ectively solves the problem for all values of k nor that the marginal
bene®t from diversi®cation decreases with the number of securities.
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4 Note that when securities can be sold short, we need not distinguish between F and SF as is

required when short-selling is disallowed; hence, the case when short-selling is allowed is easier to

analyze.
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Appendix A

Proof of Proposition 4. For k � 1 . . . K, let

V �k� �
Xk

i�1

b2
i

0B@ ÿ
p:
Pk

i�1 bi

� �2

�k ÿ 1�:p � 1

1CA:
We ®rst show that for k � 2; . . . ;K, V �k� > V �k ÿ 1�, and that for
k � 2; . . . ;K ÿ 1, V �k� ÿ V �k ÿ 1�P V �k � 1� ÿ V �k�. Note that for k such
that K P k P 2,

V �k� ÿ V �k ÿ 1� � �k ÿ 2�p � 1

�k ÿ 1�p � 1

� �
b2

k �
p2:

Pkÿ1
i�1 bi

� �2

�k ÿ 1�p � 1� �: �k ÿ 2�p � 1� �

ÿ
2pbk

Pkÿ1
i�1 bi

� �
�k ÿ 1�p � 1

;

i.e.

V �k� ÿ V �k ÿ 1�

� �k ÿ 1�p � 1

�k ÿ 2�p � 1

� �
:
�k ÿ 2�p � 1

�k ÿ 1�p � 1
bk

0@24 ÿ
p
Pkÿ1

i�1 bi

� �
�k ÿ 2�p � 1

1A352

: �A:1�

From the de®nition of the algorithm for selecting a k-optimal portfolio, it
follows that the right-hand side of Eq. (A.1) is positive; hence, for k � 2; . . . ;K,
V �k� > V �k ÿ 1�.

We will now show that for k � 2; . . . ;K ÿ 1,

�k ÿ 2�p � 1

�k ÿ 1�p � 1
bk

0@ ÿ
p
Pkÿ1

i�1 bi

� �
�k ÿ 2�p � 1

1A
P
�k ÿ 1�p � 1

kp � 1
bk�1

0@ ÿ
p
Pk

i�1 bi

� �
�k ÿ 1�p � 1

1A:
�A:2�

We can rewrite the di�erence between the left-hand and right-hand sides of
(A.2) as

�k ÿ 1�p � 1

kp � 1
bk� ÿ bk�1� � �k ÿ 2�p � 1

�k ÿ 1�p � 1

�
ÿ �k ÿ 1�p � 1

kp � 1

�
bk

� pbk

kp � 1
ÿ

p2:
Pkÿ1

i�1 bi

� �
�k ÿ 1�p � 1� � kp � 1� �
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which simpli®es to

�k ÿ 1�p � 1

kp � 1
bk� ÿ bk�1�

� p �k ÿ 2�p � 1� �
�k ÿ 1�p � 1� � kp � 1� � bk

24 ÿ
p
Pkÿ1

i�1 bi

� �
�k ÿ 2�p � 1� �

35: �A:3�

The ®rst term in Eq. (A.3) is non-negative because bk P bk�1. The second
term in Eq. (A.3) is non-negative by the de®nition of the algorithm for selecting
a k-optimal portfolio and by the non-negativity of p. Therefore, the expression
(A.3) is non-negative, and we have established (A.2).

Now, since 06 p6 1, for all k P 2,

�k ÿ 1�p � 1

�k ÿ 2�p � 1
P

kp � 1

�k ÿ 1�p � 1
:

Hence, from Eqs. (A.1) and (A.2), it follows that for k � 2; . . . ;K ÿ 1,
V �k� ÿ V �k ÿ 1�P V �k � 1� ÿ V �k�. That is,����������

V �k�
p�

ÿ
��������������������
V �k ÿ 1�

p � ����������
V �k�

p�
�

������������������
V �k ÿ 1�

p �
P

������������������
V �k � 1�

p�
ÿ

������������
V �k�

p � ������������������
V �k � 1�

p�
�

����������
V �k�

p �
:

�A:4�

However, 0 < V �1� < V �2� < � � � < V �K�, and therefore, Eq. (A.4) implies that����������
V �k�

p
ÿ

������������������
V �k ÿ 1�

p
>

������������������
V �k � 1�

p
ÿ

����������
V �k�

p
:

Since

W �k� ÿ W �k ÿ 1� �
����������
V �k�p ÿ ������������������

V �k ÿ 1�p�����������
1ÿ p
p

and

W �k � 1� ÿ W �k� �
������������������
V �k � 1�p ÿ ����������

V �k�p�����������
1ÿ p
p ;

the proposition stands proved. �
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