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Abstract
The use of pathways and gene interaction networks for the analysis of differential expres-

sion experiments has allowed us to highlight the differences in gene expression profiles

between samples in a systems biology perspective. The usefulness and accuracy of path-

way analysis critically depend on our understanding of how genes interact with one another.

That knowledge is continuously improving due to advances in next generation sequencing

technologies and in computational methods. While most approaches treat each of them as

independent entities, pathways actually coordinate to perform essential functions in a cell.

In this work, we propose a methodology based on a sparse regression approach to find

genes that act as intermediary to and interact with two pathways. We model each gene in a

pathway using a set of predictor genes, and a connection is formed between the pathway

gene and a predictor gene if the sparse regression coefficient corresponding to the predictor

gene is non-zero. A predictor gene is a shared neighbor gene of two pathways if it is con-

nected to at least one gene in each pathway. We compare the sparse regression approach

to Weighted Correlation Network Analysis and a correlation distance based approach using

time-course RNA-Seq data for dendritic cell from wild type, MyD88-knockout, and TRIF-

knockout mice, and a set of RNA-Seq data from 60 Caucasian individuals. For the sparse

regression approach, we found overrepresented functions for shared neighbor genes

between TLR-signaling pathway and antigen processing and presentation, apoptosis, and

Jak-Stat pathways that are supported by prior research, and compares favorably to

Weighted Correlation Network Analysis in cases where the gene association signals are

weak.

Introduction
Genes in eukaryotic genomes rarely work alone, rather, they cooperate and interact with other
genes to form networks or pathways. Gene products can act as activators or repressors to other
genes, or bind with each other to form more complicated structures. Many types of pathways
or interaction databases have been made available, such as databases for metabolic pathways
[1, 2], signal transduction pathways [3, 4], and protein-protein interaction networks [5, 6].
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The use of pathways in gene, protein, and genome structural variation analyses has become
increasingly important as our understanding of the networks and pathways improved with
recent advances in high-throughput technology. It has allowed researchers to make sense of
observations about the expressions of genes or proteins not only as singular events, but also in
a broader context of what is occurring in their interaction neighborhoods. Our current
approaches for analyzing gene expression profiles using pathways often rely on finding path-
ways with an overrepresentation of differentially expressed genes [7]. In these types of analyses,
a pathway is seen as a collection of genes independent from other genes and pathways. How-
ever, pathways often work together as a cascade of pathways for the transduction of biological
signals and for other cellular functions. Therefore, while much progress has been made in the
understanding of individual pathways, pathway-based analyses are often affected by the inter-
action or crosstalk that exist between different pathways [8]. Given that current knowledge of
gene interactions is still incomplete, many interactions may still exist between upstream and
downstream pathways. Finding these genes to fill in the missing pieces of the puzzle is crucial
to the full understanding of the interactive pathways in our genome.

Correlation of gene expression is a common approach for finding novel gene interactions
[9–11], but it can be sensitive to sample size [12]. In this work, we propose a sparse regression-
based methodology, aimed at discovering intermediary genes between two pathways. For the
analysis of pathways 1 and 2, the proposed method divides genes into three gene sets: genes in
pathway 1, genes in pathway 2, and the remaining genes. It looks for genes in the remaining set
that are associated with genes in both pathways, i.e., shared neighbor genes of the two path-
ways. More specifically, we use sparse regression with the remaining genes as predictors to
model genes in pathways 1 and 2. Predictor genes having non-negative coefficients are consid-
ered as having interactions with the modeled pathway genes.

For a knockout experiment, we can further compare the shared neighbor genes found in the
wild type and knockout samples, in order to find shared neighbor genes that are uniquely
affected by the knockouts. Comparison of changes in shared neighbor genes can lead to discov-
ery of genes that are essential for the communication between the two pathways.

Materials and Methods
In this work, we will formulate the proposed methodology for RNA-Seq gene expression profile
experiments. The method is applied to RNA-Seq data to discover shared neighbor genes, but
can also used with any technology that measures the gene expression profile of a sample.

Dataset
We use two RNA-Seq datasets to evaluate the proposed method for the prediction of shared
neighbor genes between two pathways. The first dataset is a time-series gene-knockout experi-
ment of mouse dendritic cells, which was previously made public in [13]. The second set con-
sists of RNA-Seq data of 60 Caucasian individuals [14] obtained from [15].

Mouse Dendritic Cell Knock-out Time-course Data. In adaptive immune response, den-
dritic cells act as intermediary between antigens and mammalian immune mechanism by pro-
cessing and presenting antigens to lymphocytes. One of the most important pathways involved
in the activation of innate immune response is the Toll-like receptor 4 (TLR4) signaling path-
way. TLR-4 signaling pathway is activated when lipopolysaccharide (LPS) found on the surface
of Gram-negative bacteria is bound to the extracellular domain of TLR4, which eventually
leads to the activation of proinflammatory cytokines and type-1 interferons [16]. After LPS
binding, TLR4 signaling branches into two pathways, independently utilizing the adaptor pro-
teins MyD88 and TRIF [17]. MyD88-dependent pathway is utilized for the rapid activation of
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IRAK1, IRAK4, and TAK1, which are important for the activation of MAPK and NF-κB genes,
whereas the TRIF-dependent pathway is essential for the production of interferon-β and late-
phase activation of NF-κB [18]. Understanding how the two independent pathways interact
with downstream activities, and finding genes that are involved in signal transduction between
the upstream and downstream pathways, are important steps for further understanding of
mammalian adaptive immune response. In this work we use a dataset that consists of wild
type, MyD88 KO, and TRIF KO mouse dendritic cell samples. Each sample was extracted from
bone-marrow cells under the presence of GM-CSF. All three types of cells were then stimulated
with LPS to elicit immune response. Samples from the stimulated cells were collected at 0hr,
0.5hr, 1hr, 2hrs, 3hrs, 4hrs, 6hrs, 8hrs, 16hrs, and 24hrs after stimulation, and RNA-Seq was
performed on each sample. The time-series RNA-Seq data is currently available in Sequence
Read Archive with accession number DRA001131 [13].

Prior to analysis by the proposed method, the mouse dendritic cell time-course RNA-Seq
dataset was checked for read quality using FastQC [19]. The resulting reads for each of the
three cell types were mapped toM. musculusmm10 genome RefSeq gene annotations using
Bowtie1 [20] and Tophat2 [21]. Indices and annotations for Bowtie1 and Tophat2 were down-
loaded from the respective programs’ websites. Per-base read quality scores and mapping rates
for each sample are shown in S1 Fig. Reads that were successfully mapped by Tophat2 to the
mouse transcriptome were then used to estimate the gene expressions in each time sample
using Cufflinks [22]. Gene expression across different time samples in the same cell type were
normalized as FPKM (fragment per kilobase of exon per million fragments mapped) and as a
time series using Cuffdiff with option -T [22].

Before analyzing the processed RNA-Seq data, we first filtered out genes that have no
expression or show limited changes in expression throughout the time series in all three cell
types. We kept for subsequent analysis only those genes that in at least one of the cell types
have a greater than 2-fold change between the maximum and minimum expressions, and have
a maximum expression of greater than 5 fpkm. The remaining 5,676 genes were then z-nor-
malized to mean of zero and variance of one.

Caucasian RNA-Seq Data. To test the robustness of the proposed method under different
sample sizes, we have included RNA-Seq sequenced from mRNA obtained from the lympho-
blastoid cell lines (LCL) of 60 Caucasian extended HapMap individuals [14]. The raw read
count of each gene has been compiled and made available on the ReCount website (http://
bowtie-bio.sourceforge.net/recount/) [15]. The raw read counts in a sample were normalized
by dividing by the 75th percentile of the non-zero read counts of that sample [15, 23]. The total
number of genes was further filtered down to 3,599 genes by requiring that the gene have at
least one read in each of the 60 samples. Since these samples were not stimulated with LPS,
they further test the sensitivity of the proposed method in datasets with weak signals.

Gene expression profile similarity
To determine which genes are important to the transduction of signals between two distinct
pathways, we make the assumption that genes with similar expression profiles are more likely to
be interacting with each other. Given gene expression data from RNA-Seq experiments, one way
of determining the similarity between two genes is to compute some measure of distance between
their expression profiles. One of the most commonly used distance measures is the correlation
distance, based on either the Spearman or the Pearson correlation coefficients. Non-correlation-
based distance measures such Euclidean, City-block, and Maximum distance, which are all spe-
cial cases of Minkowski distances [24], have also been used as distance measures in clustering
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algorithms for gene expressions [25]. For time-series gene expression data, Mahalanobis distance
has been used as a distance measure to detect differential expression [26].

There is a vast amount of literature dealing with using distance measures to determine the
similarity of two genes based on their gene expression. However, as with all distance-based
approach, performance of each distance metric can be affected by the distribution and noise of
the data. In particular, Euclidean distance does not consider correlation between data, whereas
sample correlation coefficient is sensitive to outliers and sample size [27]. In this work, instead
of using a distance measure and choosing a threshold for calling gene interaction, we propose
the use of a sparse regression approach called elastic-net to predict gene interaction.

Sparse regression
Current advances in sequencing technology have led to a tremendous growth in biomedical
data, where sample dimensions, such as the number of genes or SNPs, have been growing at a
much faster rate than that of number of samples. This phenomenon has emphasized the need
for dimensionality reduction techniques in order to enhance the interpretability of statistical
models used to analyze these data [28, 29]. One such example is lasso, a sparse regression
model based on the ℓ1 norm, that has been applied to many problems in bioinformatics and
computational biology [30].

One disadvantage of lasso regression is that it selects at most T predictors with non-zero
coefficients, where T is the number of samples [31]. In the case where there are P predictors
and P� T, lasso regression may not be able to select enough predictors to model the depen-
dent variable. Also, lasso may randomly select one variable from a group of variables with high
pairwise correlations. In this work, we will use a sparse regression that overcomes these limita-
tions by linearly combining the ℓ1 and ℓ2 penalties as regularization terms [31]. This sparse
regression, or elastic-net, has the following optimization function:

boEN ¼ argmin
o

ðk y� Xo k2 þ ð1� lÞk o k2 þ lk o k1Þ; ð1Þ

where y is the dependent variable, X is the independent variable or predictor, ω is the coeffi-
cient of the predictor, and λ is a parameter that determines the sparsity of the model fitting.

In our work, genes a and b are defined as neighbor genes if they have “similar” expression
profile. If gene a and gene b are neighbors and gene a belongs to pathway 1, then gene b is also
considered as a neighbor of pathway 1. Let us first define O as the set of all genes, χ1 as the set
of genes in pathway 1, and χ2 as the set of genes in pathway 2, and there is no overlap between
χ1 and χ2, i.e. χ1 \ χ2 = ;. We can further defineP as the set of all genes not in pathway 1 and
pathway 2, orP = (O\χ1) \ (O\χ2), where \ denotes set difference. Then, our goal is to find the
set of genes Γ1 2P such that all genes in Γ1 are neighbors to pathway 1, and Γ2 2P such that
all genes in Γ2 are neighbors to pathway 2, and the set of shared neighbor genes between path-
ways 1 and 2 is denoted as Γ1\2.

When using correlation distance, a pair of genes is considered to be associated if their corre-
lation distance falls below the threshold. By computing the correlation distance of all genes in
P to χ1 and to χ2, we can determine the neighbor gene sets Γ1 and Γ2. In this work, we do no
compute a distance measure and setting a threshold for forming edges between genes. Instead,
we will use elastic-net regression to predict the association between genes inP to gene a in
pathway χ, by forming an edge between gene a and those genes inP that have non-zero coeffi-
cient after modeling the expression of a with the expressions of genes inP.

To setup the problem, we define yi as the T × 1 expression profile vector of gene ai, ai 2 χ,
where T is the number of samples. Furthermore, X is the T × jPj expression profile matrix of
genes inP, where jPj is the number of genes inP, and ωi is the P × 1 vector of regression
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coefficients for the elastic-net regression model of ai. With this formulation, we fit the expres-
sion profile gene ai in χ using the sparse elastic-net regression, with genes inP as predictors.
The fitted P × 1 coefficient vector cωi

EN will have N� P nonzero coefficients, and the corre-
sponding genes inP are defined as neighbor genes to gene ai.

To obtain all the neighbor genes of a pathway,

Data: X: predictor gene expression matrix, yi: gene expression vector for
gene ai 2 χ
for i = 1 to jχj do

1. Estimate cωi
EN ¼ arg min ωi

kyi �X ωik2 þ 1� lð Þk ωik2 þ lk ωik1
� �

;

2. Select the set of genes, Γi, with non-zero coefficients in cωi
EN;

end

Find Γ ¼ ð[j χj
i¼1 Γ

iÞ, the set of all neighbor genes to χ;

Algorithm 1: Neighbor genes discovery

Then, to obtain the shared neighbor genes between pathways 1 and 2,

Data: X: predictor gene expression matrix, yi: gene expression vector for
gene ai 2 χ1, zj: gene expression vector for gene bj 2 χ2
Find Γ1, the set of all neighbor genes to χ1, using Algorithm 1;
Find Γ2, the set of all neighbor genes to χ2, using Algorithm 1;
Find the shared neighbor genes for pathways 1 and 2: Γ1\2 = Γ1\Γ2;

Algorithm 2: Shared neighbor genes discovery

Each predictor gene in Γ1\2 has non-zero coefficient for at least one gene in each of the two
pathways. Since the gene expressions of these shared neighbor genes can be used to predict the
expression of genes in the two pathways in the elastic-net regression model, we hypothesize
that they are also good candidates as genes that link together the two pathways. Fig 1 illustrates
the steps in Algorithm 1 for finding shared neighbor genes between pathways 1 and 2.

When applied to samples from different cell types, the shared neighbor genes found in dif-
ferent cell types for the same pathway pair may be different due to differential expressions. For
example, in a gene knockout experiment, shared neighbor genes found only in the wild type
sample but not the knockout sample are potentially paths between the two pathways that are
affected by the gene knockout. To simplify our notation, we will drop the pathway subscripts
and denote ΓW\K for some pathway pair as the set of shared neighbor genes found only in the
wild type but not knocked out sample, and ΓW\K as the set of shared neighbor genes that are
found in both the wild type and the knocked out sample.

Through gene set enrichment analysis, we can find if any functional overrepresentation and
statistical significance exist in the shared neighbor genes that exist under only a specific condi-
tion. In particular, we are interested in finding if certain shared neighbor genes exist only in the
wild type sample, but not in the knockout sample. Such genes may have a role in connecting
the two pathways and their functions are affected by the gene knockout in the upstream path-
way. We will then compare the statistically significant overrepresented functions of these genes
to known research findings to confirm the role of these genes in connecting the pathways.

Results

Mouse Dendritic Cell Knock-out Time-course Data
We applied the proposed method to a time-series mouse dendritic cell RNA-Seq experiment
with wild type, MyD88 knockout, and TRIF knockout (KO) cell types. Since both of these
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adaptor proteins are key components of the TLR signaling pathway, we used the proposed
method on each cell type to find shared neighbor genes between TLR signaling pathway and
downstream pathways that are affected by immune response caused by LPS stimulation. We
then found the set difference gene lists between the wild type and one of the knockout data to
find neighbor genes that are unique to each cell type. For elastic-net regression, we used the
glmnet implementation in R [32] with λ = 0.5 and fitted the model to explain 75% of the

Fig 1. Schematic diagram for finding shared neighbor genes between pathways 1 and 2.

doi:10.1371/journal.pone.0137222.g001
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variance in each gene’s time-series expression. For WGCNA, we set soft power to 8 for the
adjacency computation.

From previous research, after knocking out MyD88 or TRIF in dendritic cells, we expected
to observe changes in expressions in genes belonging to the downstream antigen processing
and presentation, apoptosis, and Jak-Stat pathways [17, 33, 34]. We constructed the gene lists
for these pathways by obtaining their gene lists from KEGG [1, 2] and AmiGO [35]. For each
of the TLR-signaling—antigen procession and presentation, TLR-signaling—apoptosis, and
TLR-signaling—Jak-Stat pathway pairs, we used genes not in the two pathways as predictor
genes in elastic-net regression.

In the following discussion, we compared the shared neighbor genes in wild type to those in
MyD88 KO and TRIF KO cell types to find potential links between TLR signaling pathway and
a downstream pathway, and observed which of these links are affected by the gene knockouts.
We denote ΓW\M\T as shared neighbor genes that exist between two pathways in both the wild
type and MyD88-KO samples, but not in the TRIF-KO sample. This set represents those genes
that are associated with the TRIF-dependent part of the TLR-signaling pathway, and their
functions are affected by the TRIF-KO. Similarly, ΓW\T\M denotes those shared neighbor
genes that exist in both the wild type and the TRIF-KO samples, but not the MyD88-KO sam-
ple. Fig 2 shows a Venn diagram of the two gene sets. In our comparisons we used Weighted
Correlation Network Analysis (WGCNA) as well as a correlation distance implementation
using μ = 0.1 as the threshold for finding neighbor genes. We then used gene ontology overrep-
resentation analysis on these gene set difference lists to find important functions between the
pathways that are disabled by the knockout, which knocked out path are these functions associ-
ated with, and confirmed our findings through prior research.

Antigen processing and presentation. Dendritic cells are critical to the adaptive immune
mechanism by acting as an initiator for activating T cells and initiating primary and memory
immune responses [36], and presentation of pathogens is accomplished through major histo-
compatibility complex (MHC) class I or MHC class II molecules. It is well known that when
dendritic cells are stimulated by LPS, the downstream antigen processing and presentation
functions are activated through the upstream TLR-signaling pathway [37].

We used the proposed method to find shared neighbor genes between TLR signaling path-
way and antigen processing and presentation for each of the wild type, MyD88 knockout, and
TRIF knockout cell types, denoted as ΓW, ΓM, and ΓT, respectively. We then constructed the
sets ΓW\T\M and ΓW\M\T as described in the Materials and Methods Section. The same steps
were followed for correlation distance andWGCNA. The corresponding set difference gene
sets using correlation distances are denoted asΘW\T\M andΘW\M\T, and those for WGCNA
are denoted as FW\T\M and FW\M\T.

In Figs 3 and 4 we have drawn figures of shared neighbor genes with their connected path-
way genes in ΓW\T\M and ΓW\M\T using Cytoscape [38], respectively.

Genes in each of the six sets can be found in Table A in S1 File. For sets ΓW\T\M and ΓW\M
\T we found 63 and 108 genes, respectively. For setsΘW\T\M andΘW\M\T, we found 689 and
276 genes, respectively. For sets FW\T\M and FW\M\T, we found 186 and 285 genes, respec-
tively. The numbers of genes in the two gene sets found by elastic-net are much closer to each
other than those found by the correlation distance implementation, where the set with more
genes is almost 3 times larger than the smaller one. Compared to the correlation distance
implementation, the two gene sets found by WGCNA also have more comparable numbers of
genes. This is an advantage for the elastic-net method and WGCNA due to the impact that
gene list size has on the significance of terms discovered, making the overrepresentation results
for the elastic-net-generated lists much more comparable.
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To find overrepresented GO terms in the gene lists we used Gorilla [39] withP as back-
ground. The significant gene ontology terms and the genes with those GO terms in ΓW\T\M
and ΓW\M\T are listed in Tables 1 and 2, respectively. The top 5 significant gene ontology
terms and their FDR for elastic-net, correlation distance, and WGCNA are shown in Table B
in S1 File. Of the 6 gene sets, only ΓW\M\T and FW\M\T contain statistically significant gene
ontology terms related to immune process after multiple testings correction using FDR. In par-
ticular, we found that both ΓW\M\T and FW\M\T are significantly represented with genes in
response to cytokine (FDR = 3.63E-4 for elastic-net and FDR = 1.19E-9 WGCNA) and
response to interferon-β (FDR = 1.39E-4 for elastic-net and FDR = 2.49E-9 for WGCNA).
Both of these gene sets are overrepresented in similar GO terms, with WGCNA having the
more significant gene set in terms of FDR, but the elastic-net method also having significant
FDR. On the other hand, for the correlation distance approach, whileΘW\M\T also contains
genes with the gene ontology term response to interferon-β, its FDR is 1E0, with no other
terms showing any statistical significance.

Fig 2. Venn diagram of shared neighbor genes fromwild type, MyD88-KO, and TRIF-KO samples.

doi:10.1371/journal.pone.0137222.g002
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Fig 3. Network edges of shared neighbor genes found in wildtype and TRIF-KO, but not in MyD88-KO, by elastic-net.Red nodes: TLR signaling
pathway genes. Blue nodes: Antigen processing and presentation genes. Green nodes: Shared neighbor genes.

doi:10.1371/journal.pone.0137222.g003
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Through literature search, we were able to confirm the findings by elastic-net and WGCNA
with prior study showing that TRIF is responsible for the induction of interferon-β [40], and
more recent research showing that the inhibition of interferon-β impairs the antigen presenta-
tion functions of dendritic cells [41]. Using the proposed methodology, we were able to predict
correctly that genes related to the response to interferon-β are acting as intermediary between
TLR signaling pathway and genes responsible for antigen processing and presentation.

Apoptosis. Apoptosis of dendritic cells plays an important role in the balancing of
immune tolerance and the development of autoimmunity [42]. An excessive activation of den-
dritic cells can induce tissue-specific and systemic autoimmune symptoms [42–44], and an
environment where significant dendritic cell apoptosis occurs is immunosuppressive [45]. It
has been shown that dendritic cell apoptosis is controlled by the TLR4-mediated TRIF-depen-
dent signaling pathway [46] and that Type-1 interferons are necessary and sufficient for the
induction of apoptosis for dendritic cells [47]. In particular, interferon-γ has been shown to
induce nitric oxide synthase in mouse dendritic cells, and the production of nitric oxide is asso-
ciated with dendritic cell apoptosis [48]. Furthermore, cytokines has been shown to be the path
of TRIF-induced apoptosis [49].

For TLR signaling pathway and apoptosis we have found 65 and 63 genes for ΓW\T\M and
ΓW\M\T, respectively. ForΘW\T\M andΘW\M\T we found 842 and 337 genes, respectively. For

Fig 4. Network edges of shared neighbor genes found in wildtype andMyD88-KO, but not in TRIF-KO, by elastic-net.Red nodes: TLR signaling
pathway genes. Blue nodes: Antigen processing and presentation genes. Green nodes: Shared neighbor genes. Cyan nodes: Shared neighbor genes with
“reseponse to interferon-βGO term. Red edges: edges from cyan genes to pathway genes.

doi:10.1371/journal.pone.0137222.g004

Table 1. Significant GO terms and genes for ΓW\T\M between TLR Signaling Pathway and Antigen Pro-
cessing and Presentation.

GO Terms Genes

positive regulation of determination of dorsal identity Acvr1, Mapk8

positive regulation of response to wounding Jak2, Ptgs2, Adcra2b, Plek, Pdpn

positive regulation of phosphatase activity Jak2, Rpl5, Plek

doi:10.1371/journal.pone.0137222.t001

Table 2. Significant GO terms and genes for ΓW\M\T between TLR Signaling Pathway and Antigen Pro-
cessing and Presentation.

GO Terms Genes

response to interferon-β Ifi205, Ifit1, Gm4951, Gbp6, Ifitm3, Ifi204, Pyhin1, Iigp1

cellular response to interferon-
β

Ifi205, Ifit1, Gbp6, Gm4951, Ifi204, Pyhin1, Iigp1

response to cytokine Gbp7, Gbp6, Gm4951, Pyhin1, Ifit2, Ifi205, Ifit1, Isg15, Ifi204, Ifitm3,
Gbp9, Iig1, Cxcl16

response to other organism Gbp7, Sp110, Gbp6, Casp1, Ddx58, Dhx58, Ifit2, Ifit1, Isg15, Ifitm3,
Gbp9, Iigp1, Rsad2, Lcn2

cellular response to cytokine
stimulus

Ifi205, Gbp7, Ifit1, Gm4951, Gbp6, Ifi204, Gbp9, Pyhin1, Iig1, Ifit2

doi:10.1371/journal.pone.0137222.t002
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FW\T\M and FW\M\T we found 201 and 274 genes, respectively. The genes for each gene set
are listed in Table A in S1 File. Again, the numbers of genes found are much more comparable
in the elastic-net implementation and WGCNA, with elastic-net finding almost exactly the
same number of genes in the two shared neighbor gene sets.

We analyzed the gene sets for overrepresented GO terms, and the top 5 significant gene
ontology terms for each are shown in Table C in S1 File. The significant gene ontology terms
and the genes with those GO terms for ΓW\T\M and ΓW\M\T are listed in Tables 3 and 4,
respectively. For ΓW\M\T, we found that response to interferon-γ is significantly overrepre-
sented with FDR = 1.15E-2, and no immune related terms were found to be significant in the
ΓW\T\M set. Response to interferon-γ was also found to be significant in FW\M\T with
FDR = 8.75E-4. Again, both elastic-net and WGCNA found similar overrepresented GO terms,
with WGCNA having more significant FDR values.

For correlation distance, whileΘW\M\T contains several highly significant immune related
GO terms, it is significantly overrepresented only in response to interferon-β (FDR = 1.65E-4),
but not interferon-γ. In this case, both the elastic-net implementation and WGCNA were again
able to find result that is supported by existing studies. While the correlation distance imple-
mentation was also able to find that significant immune related processes are altered by
TRIF-KO, it’s results are not as precise and accurate.

Jak-Stat signaling pathway. The Jak-Stat signaling pathway is responsible for signal trans-
duction in development and homeostasis in animals, and is the primary signal mechanism for
cytokines [50]. It has been pointed out that because the Jak-Stat signaling pathway is down-
stream of interferon-β production, it should be affected by the TRIF-dependent pathway [51],
but not the MyD88-dependent pathway [52].

The genes in ΓW\T\M, ΓW\M\T,ΘW\T\M, andΘW\M\T are listed in Table A in S1 File. For
sets ΓW\T\M and ΓW\M\T we have found 137 and 114 genes, respectively. For setsΘW\T\M and
ΘW\M\T we found 734 and 308 genes, respectively. For sets FW\T\M and FW\M\T we found
378 and 407 genes, respectively.

Table 3. Significant GO terms and genes for ΓW\T\M between TLR Signaling Pathway and Apoptosis.

GO Terms Genes

protein dephosphorylation Ptpre, Ppp1r15b, Ptpn23, Dusp16, Fbxw11, Ssh2

dephosphorylation Ptpre, Ppp1r15b, Ptpn23, Dusp16, Fbxw11, Ssh2, Mtmr14

ubiquitin-dep. protein catabolic
proc.

Ptpn23, Usp16, Siah2, Psmb7, Rffl, Ube4a, Fbxw11

proteolysis Bcl10, Siah2, Ptpn23, Usp16, Psmb7 Rffl, Ndel1, Plat, Ube4a,
Fbxw11, Metap1

positive reg. of platelet activation Plek, Pdpn

doi:10.1371/journal.pone.0137222.t003

Table 4. Significant GO terms and genes for ΓW\M\T between TLR Signaling Pathway and Apoptosis.

GO Terms Genes

cellular response to cytokine stimulus Gbp7, Gm4951, Gbp6, Ifi204, Gbp9 Gbp3, Iigp1, Ifit2

response to protozoan Gbp7, Gbp6, Gbp9, Gbp3, Iigp1

cellular response to interferon-β Gbp6, Gm4951, Ifi204, Gbp3, Iigp1

cellular response to interferon-γ Gbp7, Gbp6, Gbp9, Gbp3

doi:10.1371/journal.pone.0137222.t004
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The top significant gene ontology terms for each gene set are shown in Table D in S1 File.
The significant gene ontology terms and the genes with those GO terms for ΓW\T\M and
ΓW\M\T are listed in Tables 5 and 6, respectively. For TLR signaling Jak-Stat pathways, both
the elastic-net implementation andWGCNA discovered in ΓW\M\T and in FW\M\T genes that
are overrepresented with the cellular response to interferon-β term (FDR = 3.48E-5 and 9.56E-
9, respectively), and found no significant functional overrepresentation related to immune pro-
cess present in ΓW\T\M nor FW\T\M, in agreement with existing literature. On the other hand,
the gene sets obtained from correlation distance implementation also did not find any GO
terms with significant functional overrepresentation. For ΓW\T\M, gene ontology analysis did
find several terms relating to antigen processing and presentation, but the lowest FDR of these
terms is only 6.16E-1.

Caucasian RNA-Seq Data
With the Caucasian RNA-Seq datasets, we again applied the elastic-net, correlation distance,
and WGCNA to discover shared neighbor genes between TLR signaling pathway and antigen
processing and presentation, apoptosis, and Jak-Stat pathways. We used the same parameters
as used in the mouse dendritic cells analysis. Since there are no gene knockouts in this experi-
ment, we only compared the shared neighbor gene sets found by elastic-net, correlation dis-
tance, and WGCNA in the wild type samples, denoted as Γ,Θ, and F, respectively. The gene
sets are listed in Table A in S2 File, and the top overrepresented GO terms for shared neighbor
genes between TLR signaling pathway and antigen processing and presentation, apoptosis, and
Jak-Stat pathways are listed in Tables B, C, and D in S2 File, respectively.

Elastic-net, correlation distance, and WGCNA found 82, 42, and 173 shared neighbor genes
between TLR signaling pathway and antigen processing and presentation. In Table B in S2 File,
we can see that elastic net found that type I interferon signaling pathway and response to type I
interferon to be significantly overrepresented with p-values 4.20E-4 and 5.53E-4, respectively.
While specific terms related to interferon-β was not found to be overrepresented, it is a mem-
ber of the human type I interferon family. On the other hand, for correlation distance and

Table 5. Significant GO terms and genes for ΓW\T\M between TLR Signaling and Jak-Stat Pathways.

GO Terms Genes

positive regulation of cell cycle Cdk5r1, Bcl2l11, Vps4b, Hspa2, Igf1r Tnf, E2f8, Eif4e, Nr4a3, Mad2l1

NIK/NF-κB signaling Nfkb2, P49/p100, Relb, Rel

doi:10.1371/journal.pone.0137222.t005

Table 6. Significant GO terms and genes for ΓW\M\T between TLR Signaling and Jak-Stat Pathways.

GO Terms Genes

cellular response to
interferon-β

Ifi205, Ifit1, Gbp6, Gm4951, Ifi204 Gbp3, Iigp1, Gbp2

response to cytokine Ifi205, Gbp7, Ifit1, Gm4951, Gbp6, Isgl1, Ifi204, Trim56, Ptgs2, Gbp3 Gbp3,
Iigp1, Gbp2

multi-organism process Sp110, Gbp7, Gbp6, Chmp4b, Trim56, Hdac1 Ifih1, Gbp3, Ddx58, Ccnk,
Gbp2, Rsad2 Tap2, Ifit1, Isg15, Ddx60, Iigp1

defense response to other
organism

Gbp7, Ifit1, Gbp6, Isg15, Trim56, Ifih1 Ddx60, Gbp3, Iigp1, Ddx58, Gbp2,
Rsad2

doi:10.1371/journal.pone.0137222.t006
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WGCNA, no immune process related GO terms were found to be overrepresented. The top
terms for both are populated with metabolic and biosynthetic processes terms.

For apoptosis, 110, 142, and 794 shared neighbor genes were found by elastic-net, correla-
tion distance, and WGCNA, respectively. From GO analysis, we can see that correlation dis-
tance and WGCNA found no overrepresented immune related GO terms, while elastic-net
found lymphocyte and leukocyte mediated immunity to be overrepresented, which include
genes such as FCER2 (CD23), RasGRP1, and HLA-E. From literature we know that CD23 is
induced by TLR4 [53], and that high apoptotic rates are often correlated to the expression of
CD23 [54]. RasGRP1 is a guanine nucleotide exchange factor whose expression is upregulated
by LPS and other TLR agonists [55], and promotes B cell receptor-induced apoptosis [56]. Fur-
thermore, the transcription of HLA-E, the human major histocompatibility complex (MHC)
class Ib gene, is shown to be mediated by interferon-γ [57], and is known to elicit apoptosis in
natural killer cells [58].

For Jak-Stat pathway, 122, 95, and 268 shared neighbor genes were found by elastic-net, cor-
relation distance, and WGCNA, respectively. In this case, we see that none of the shared neigh-
bor gene sets are overrepresented in immune-related GO terms. Shared neighbor gene set
found by elastic-net (Γ) is enriched in phosphorylation and metabolic processes, whereasΘ
and F are enriched with GO terms related to transcription and RNA synthesis.

These results show that with the Caucasian RNA-Seq data, the proposed elastic-net
approach is more sensitive than WGCNA and correlation distance. Since these Caucasian indi-
vidual samples had not been stimulated with LPS, the immune response pathways are not
expected to be consistently activated across the samples. Therefore, any relationship the
upstream TLR signaling pathway has with a downstream pathway, and with any intermediary
genes will be weak, making the inference of gene-gene interactions a difficult task. In this
regard, while the significances are not high after correcting for multiple testing, several immune
process related GO terms with significant p-values were found by elastic-net for antigen pro-
cessing and presentation and for apoptosis. In the case of apoptosis, several genes are shown by
previous research to be related to both the TLR signaling pathway and apoptosis, despite the
fact that the GO terms are not known to be be their intermediary. These results show that elas-
tic-net can be more sensitive in detecting gene-to-gene relationships when the signals are weak.

Conclusion
The discovery of genes that link together the activities of different pathways are crucial to the
advance of pathway analysis and systems biology. Here we have proposed a methodology using
sparse regression approach to specifically discover genes that are shared neighbors of two dif-
ferent pathways. We have also shown that the method chosen to select neighbor genes can
greatly affect the outcome of the subsequent overrepresentation analysis. In this paper, we have
adopted the elastic-net regression approach and select those predictor genes with non-zero
coefficients as neighbors to the gene whose expression was modeled. We show in a series of
comparisons that the elastic-net implementation can predict gene-to-gene relationships
enriched with comparable GO terms to those predicted by WGCNA. At the same time, elastic-
net is shown to be more sensitive than WGCNA in datasets that contains only weak relation-
ships between genes, and is superior to a simple correlation distance implementation in all
cases tested.

It should be noted that while it is possible that a gene in one pathway studied in our work
may interact directly with a gene in the other pathway, we only attempt to find genes outside of
the two pathways, and whose expression profiles show interactions with both pathways. In
order to find direct interactions, when modeling genes in pathway 1, we can add genes from
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pathway 2 to the rest of the genes, and those genes in pathway 2 with non-zero coefficients can
then be linked directly to pathway 1, and vice versa. So far we have used only the non-zero
coefficient requirement as a selection criteria for neighbor genes of those in the two pathways.
One future direction for the development of this method is to introduce a more sophisticated
selection criteria to more precisely select neighbor genes. One such approach can be the use of
the coefficient values as a criteria, where we can rank the predictor genes with non-zero coeffi-
cients and select only the top genes as neighbors. Or we could compute the geometric mean of
the number of times a predictor is non-zero for the two pathways. Furthermore, the gene selec-
tion can be further validated by having p-values for the fitted coefficients in elastic-net. While
currently there is no known approach for computing the p-value for the coefficients in elastic-
net, one may try to do a large number of permutations of the gene expressions of the dependent
variable gene, and see how often a selected gene from the original is selected in the
permutations.

Supporting Information
S1 File. Significant genes and GO terms found by elastic-net, WGCNA and correlation dis-
tance for time-course mouse dendritic cell RNA-Seq data. Complete gene lists of ΓW\T\M,
ΓW\M\T,ΘW\T\M,ΘW\M\T, FW\T\M, and FW\M\T (Table A). Top GO terms for shared neigh-
bor genes between TLR-signaling pathway and antigen processing and presentation genes
(Table B). Top GO terms for shared neighbor genes betwen TLR-signaling pathway and apo-
ptosis genes (Table C). Top GO terms for shared neighbor genes between TLR-signaling path-
way and Jak-Stat pathway genes (Table D).
(XLSX)

S2 File. Significant genes and GO terms found by elastic-net, WGCNA and correlation dis-
tance for HapMap Caucasian individual RNA-Seq data. Complete gene lists of Γ,Θ, and F
(Table A). Top GO terms for shared neighbor genes between TLR-Signaling pathway and anti-
gen processing and presentation genes (Table B). Top GO terms for shared neighbor genes
between TLR-Signaling pathway and apoptosis genes (Table C). Top GO terms for shared
neighbor genes between TLR-Signaling pathway and Jak-Stat pathway genes (Table D).
(XLSX)

S1 Fig. Per-base quality scores and mapping-rate for all samples.
(PDF)
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