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AbstrAct: Innate immune response involves protein–protein interactions, deoxyribonucleic acid (DNA)–protein interactions and signaling cascades. So 
far, thousands of protein–protein interactions have been curated as a static interaction map. However, protein–protein interactions involved in innate immune 
response are dynamic. We recorded the dynamics in the interactome during innate immune response by combining gene expression data of lipopolysaccha-
ride (LPS)-stimulated dendritic cells with protein–protein interactions data. We identified the differences in interactome during innate immune response by 
constructing differential networks and identifying protein modules, which were up-/down-regulated at each stage during the innate immune response. For 
each protein complex, we identified enriched biological processes and pathways. In addition, we identified core interactions that are conserved throughout 
the innate immune response and their enriched gene ontology terms and pathways. We defined two novel measures to assess the differences between network 
maps at different time points. We found that the protein interaction network at 1 hour after LPS stimulation has the highest interactions protein ratio, which 
indicates a role for proteins with large number of interactions in innate immune response. A pairwise differential matrix allows for the global visualization 
of the differences between different networks. We investigated the toll-like receptor subnetwork and found that S100A8 is down-regulated in dendritic cells 
after LPS stimulation. Identified protein complexes have a crucial role not only in innate immunity, but also in circadian rhythms, pathways involved in 
cancer, and p53 pathways. The study confirmed previous work that reported a strong correlation between cancer and immunity.
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background
The immune system of a host defends it against invading 
pathogens, and it has two main subsystems: innate immu-
nity and acquired immunity.1 To initiate immune responses, 
it is crucial that the immune system can recognize pathogens. 
Recognition of pathogens is mediated by pattern-recognition 
receptors (PRRs) that recognize pathogen-associated molecu-
lar patterns (PAMPs), which are molecular structures that are 
common in pathogens.2,3 Once a PAMP has been recognized, 
PRRs initiate signaling cascades to achieve the first line of 
defense toward invading pathogens.3 A group of major players 
in innate immunity response are toll-like receptors (TLRs), 
which are transmembrane proteins3 that are specialized to 
recognize pathogens.4,5 The specificity of TLRs is based on 

PRRs, which recognize different PAMPs6 such as nucleic 
acids, lipids, lipoproteins, and proteins from different patho-
gens such as viruses, fungi, bacteria, and parasites.6,7 One of 
the TLR member proteins is TLR4, which can be stimulated 
by many PAMPs, including lipopolysaccharide (LPS),8 an 
essential part of the structure of the outer membrane of gram-
negative bacteria.

Once TLR4 recognizes LPS, it initiates signaling cas-
cades of immune responses.8,9 The TLR signaling pathways 
can be divided into MyD88-dependent pathways and TRIF-
dependent pathways.7 In TLR members, TLR4 is unique in7 
that it is the only TLR member that uses both MyD88- and 
TRIF-dependent pathways.
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Many cell types play key roles in the immune response. 
Since dendritic cells (DCs) are among the key players 
involved in the immune response, we used them in this study. 
DCs bridge innate immune responses to acquired immune 
responses. They utilize various innate immune receptors such 
as TLRs.10 TLR4 stimulation by LPS induces the production 
of various cytokines and these, in turn, stimulate the cells and 
induce downstream-signaling pathways.7,11 Thus, understand-
ing the signaling pathways invoked by LPS stimulation will 
improve our understanding of these pathways.

Advanced high-throughput technologies provided 
genome-wide information such as transcriptome data, which 
is essential for studying biological systems. Protein–protein 
interactions (PPIs) are crucial for every biological process.12 
All protein interactions that exist in a specific organism form 
an interactome. Studying biological process in the context of 
the interactome provides a system-wide understanding of a 
given process.12 Protein interaction networks are represented 
by nodes and edges where nodes represent proteins, while 
edges represent interactions between proteins.13 Though the 
innate immune response has been extensively studied, key 
questions remain. For example, it is not known how protein 
interaction networks differ during innate immune responses, 
what the important protein complexes at different stages dur-
ing innate immune response are, and which protein interac-
tions are conserved during innate immune responses.

In this study, we attempt to address these issues by com-
bining PPIs with gene expression data. Combining PPIs and 
expression data has been done before.14,15 A previous study 
examined the dynamic structure of a human protein interac-
tome to determine if changes in an interactome organization 
could be used to predict patient outcomes.15 Another study 
has applied a network-based approach to identify markers for 
breast cancer that are correlated with metastasis.14 Using a 
network-based approach in which expression data was com-
bined with PPIs data, breast cancer markers were identified 
as protein interaction subnetworks. Genes with known muta-
tions in breast cancer were not detected by typical differential 
expression analysis, but they did connect many differentially 
expressed genes, indicating that they do play an important 
role.

Taken together, these studies indicated that using PPIs 
in combination with gene expression data leads to better 
results than using either expression or PPI data alone. In 
this study, we combined PPIs with time-series gene expres-
sion data to study interactome dynamics in order to identify 
interactome differences across different stages of the innate 
immune response.

Methods
cell culture. Bone marrow cells were prepared from 

C57BL6/J mice. The cells were seeded into a 24-well plate 
at a concentration of 1 × 106 cells/mL, and they were cul-
tured in Roswell Park Memorial Institute (RPMI) medium 

containing 10% fetal bovine serum and 10 ng/mL of 
granulocyte–macrophage colony-stimulating factor pur-
chased from PeproTech (PeproTech, Rocky Hill, NJ, USA) for 
6 days, and the culture medium was changed every 2 days. Six 
days later, floating cells were major histocompatibility com-
plex (MHC) class2+CD11c+, which is a molecular hallmark 
of DCs.16 The cells were collected and suspended in RPMI 
containing 10% fetal calf serum. LPS (Re595, purchased from 
Sigma-Aldrich, St Louis, MO, USA) were added at the con-
centration of 100 ng/mL and at 0 hours, 0.5 hours, 1 hour, 
2 hours, 3 hours, 4 hours, 6 hours, 8 hours, 16 hours, and 
24 hours later, the cells were collected and lysed in TRIzol 
(Life Technologies, Carlsbad, CA, USA). Ribonucleic acid 
(RNA) extraction was performed according to the manufac-
turer’s instruction. Cells were subjected to TSS-Seq analysis 
as previously described,17 where the TSS-Seq tag library was 
constructed by combination of the oligo-capping method with 
massively parallel sequencing.17

tss-seq data. TSS-Seq data generated in this study 
were mapped to mouse genome mm918 using Bowtie.19 We 
constructed a gene model that is slightly different from that 
used by Tsuchihara et al17 in that for each Ensembl gene,17 if 
the intergenic distance between a gene and its preceding gene 
is greater than or equal to 50 kb, we counted tags upstream 
of the TSS up to 50 kb. If the distance is less than 50 kb, the 
tags were counted upstream of TSS with distance equal to the 
intergenic region. Biomart20 was used to import gene features. 
Tag count was done based on the gene model. Counts were 
smoothed by add one smoothing; then filtered, normalized, 
and differentially expressed genes were identified based on a 
P-value of likelihood ratio test after fitting to a generalized lin-
ear model using edgeR.21 Only genes with a P-value ,0.001 
were regarded as significantly differentially expressed genes. 
We selected the top 100 differentially expressed genes and 
confirmed their validity using Gene Ontology (GO) enrich-
ment analysis.22 The genes were enriched for terms related to 
the innate immune response.

GO enrichment analysis for the top 100 differentially 
expressed genes showed high enrichment for the GO term 
“immune responses”, which indicates the importance of dif-
ferentially expressed genes in the immune response.

Protein–protein interaction data. We prepared a set 
of unique mouse interactions from publicly available protein 
interactions. PPIs were collected from the PPIs databases, 
InnateDB23 and HitPredict.24 Network visualization and anal-
ysis was done using Cytoscape.25 Cytoscape plugins used for 
the network analysis included MCODE,26 and Network Ana-
lyzer.27 Network edges were weighted by Pearson’s correlation 
coefficient of gene co-expression.

time-specific networks. We defined an interactome 
map for each time point during the innate immune response 
based on gene expression values at that time point. We con-
structed networks of proteins that are encoded by genes, which 
showed significant up-/down-regulation after stimulation for 
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each time point. In this study, we considered proteins encoded 
by the genes that show up-regulation by fourfold or more to 
be up-regulated proteins, and those encoded by genes that 
are down-regulated by four fold or more were regarded as 
down-regulated proteins. We constructed nine time-specific 
networks.

differential networks. From the time-specific networks, 
we constructed differential networks between two successive 
time points such that differential network between time t1 and 
t2 only had interactions that were unique to the t1 network 
but not to the t2 network, as shown in Figure 1. We identi-
fied differences in the PPIs networks between two consecutive 
time points by constructing differential maps.

Module identification and scoring – feature-weighted 
score. Protein modules were identified based on the density of 
the protein complex using Cytoscape plugin, MCODE.25

Identified modules were scored using a novel scoring 
method to assess the significance of an identified module. The 
feature-weighted score is based on the following factors:

1. Module’s density, as expressed by a clustering coefficient 
(MCODE score).

2. GO enrichment of the module nodes and whether the 
enrichment is statistically significant.

3. Proportion of differentially expressed genes in the 
module.

4. The average co-expression correlation coefficient of inter-
actions in the module that reflect the co-expression of 
any two interacting partners.

5. Weights and the score calculation for each criteria are 
shown in Table 1. We calculated the weighted mean and 
called it a feature-weighted score and scored each identi-
fied module by the corresponding score.

The feature weighted score was calculated as follows:
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Where S is the score of each criterion in a protein complex; 
W is the weight of each criterion; and N = 4 (as we included 
four criteria in the score).

We minimized errors to avoid spurious scores as  
follows:

1. Co-expression scores of self-loops were ignored;
2. If the average PCC for co-expression was negative, it was 

replaced with zero; and
3. If the assigned GO term was significant, the score = 1; 

otherwise, the score = 0.

The weight of each criterion was assigned based on 
the significance of each criterion. For example, we assigned 
co-expression a weight of 0.5, as co-expression is the most 
important factor in ranking the significance of a module. 
GO enrichment was assigned a weight of 0.1, as it is the least 
significant criterion, and a module with no significant GO 
enrichment may still play an important role in immunity. 
Modules were classified into highly significant, significant, 
or less significant modules based on their respective scores. 
Identified modules were compared with protein complexes 
in the CORUM database, a database of protein complexes in 
mammals.28

Interactions protein ratio (IPr). The IPR for a network 
is defined as the ratio of the total number of interactions to the 
total number of proteins in the network.

IPR can be determined by the following equation:
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It may be also expressed as:
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Network A Network B Differential network A–B Differential network B–A

Figure 1. differential networks. 
Diagram explaining differential maps. Differential network (a–B) has interactions specific to network (a) and not to network (B). Differential network 
(B–a) has interactions specific to network (B) and not to network (a).
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where
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where J is an interaction in a network; x is a protein in a net-
work; M is the total number of interactions in the subnet-
work; N is the total number of proteins in the subnetwork; D 
is the degree of a protein in the network; and D is the average 
degree of proteins in the network.

The node degree is defined as the number of interactions 
that the node has. The proof of Equation 3 is in Supplemen-
tary data.

To determine the significance of IPR, we constructed 
1,000 random networks that were the same size as the time-
specific networks, and we calculated the IPR for each random-
ized network. We compared the IPRs of the time-specific and 
randomized networks and calculated P-values as the ratio of 
the number of randomized networks that have same or higher 
IPR than that of a time-specific network over the total num-
ber of randomized networks.

Pairwise differential matrix (PwdM). PWDM is a 
matrix for normalized differences between each pair of networks 
specific for each time point. PWDM can be used to express dif-
ferences in nodes or interactions between networks. Heatmaps 
and figures were made using R.29

Go and KeGG enrichment. All GO term and KEGG 
pathway30 enrichment analyses were done using DAVID.31,32

results
Interactome dynamics: global overview. To reveal 

interactome dynamics during the innate immune response, 
we constructed a network of all unique PPIs from the data-
bases InnateDB and HitPredict. The constructed network has 
4,822 proteins with 10,549 interactions; we identified their 
expression patterns. In the interaction network, each protein 
was represented by a node where the node size represented the 
degree of interactions of the protein. To acquire a global view 
of interactome dynamics during the innate immune response, 
we identified the time point that had the largest number of 
interactions resulting from the smallest number of up-/down-
regulated genes after stimulation with LPS. We considered 

interactome dynamics from two perspectives: First, we iden-
tified protein complexes from a network of proteins that are 
encoded by genes that show differential expression during 
the whole time course of an innate immune response. These 
proteins and their interactions constitute a differentially 
expressed network. Second, we identified differences in the 
up-/down-regulation of an interactome between two con-
secutive time points during an innate immune response (dif-
ferential networks), as well as core proteins/interactions that 
were conserved in an interactome during the innate immune 
responses. Protein modules were identified from each differ-
ential network and were scored as shown in Equation 1, as 
described in the Methods section. The modules were classi-
fied into highly significant, significant, and less significant 
modules based on the score of each module.

Interaction protein ratio (IPr) during the innate 
immune response. A previous study has reported that pro-
teins with the highest number of interactions are the most 
essential proteins for survival.33 We asked which time point 
after LPS stimulation is most essential for an innate immune 
response.

In order to determine the time point at which the largest 
number of up-/down-regulation occurs, we calculated the IPR 
of both up- and down-regulated proteins separately in each 
time-specific network, as shown in Figure 2. We found that 
the point with highest IPR was 1 hour after stimulation. This 
indicates that up-/down-regulated proteins at 1 hour may have 
the largest effect on the interactome during an innate immune 
response. The difference in IPR between 0.5 hours and 1 hour 
is small, but it is statistically significant (P = 0.004). The 
P-value was calculated by considering the IPR of random-
ized networks. The IPR of randomized networks is signifi-
cantly lower than that of time-specific networks, as shown in 
Figure 2. This IPR showed a sharp increase at 1 hour after 
stimulation, followed by a sharp decrease at 2 hours. This fur-
ther decreased at 3 hours, followed by large increase at the 
transition from 6 hours to 8 hours, which is followed by stabil-
ity in the IPR after 8 hours, which lasted until 24 hours after 
stimulation. This showed that the largest number of interac-
tions per up-regulated protein were most affected at 1 hour 
after stimulation, followed by another appreciable fraction 
being stimulated at 6 hours. Down-regulated genes showed an 
increase in IPR after stimulation, though it was less than that 
of the up-regulated genes that were followed by a fluctuating 
decrease in IPR during the innate immune response.

Hubs in innate immune response. We found that net-
works that were constructed from up-/down-regulated genes 
had a high IPR, which indicated that these up-/down-regu-
lated networks have a high number of hubs relative to the ran-
dom networks, suggesting a role for those hubs in the innate 
immune response.

differentially expressed network. We constructed a 
network of PPIs for differentially expressed proteins and their 
interactors. Differentially expressed proteins are proteins 

table 1. Criteria of feature weighted score and their weights.

CrItErIon WEIght

Coexpression 0.5

differentially expressed genes 0.3

Go enrichment 0.1

module’s density 0.1
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These modules have many differentially expressed genes and 
need further investigation to determine their exact role in 
innate immunity, such as NPHP1–NPHP4–RPGRIB1L 
(which has a score of 0.41) and PSTPIP1–FAS1–PTPN12, 
which has a score of 0.34.

core PPI network. Conserved interactions during 
innate immune responses are those that exist in all interaction 
maps during the innate immune response. We identified pro-
teins and interactions that are conserved in all time-specific 
interactome maps during the innate immune response and 
constructed a network of 390 proteins with 198 interactions, 
as shown in Figure 3. GO22 and KEGG30 pathway analysis 
results (Table S2) showed enrichment for biological processes 
such as immune system development and protein kinase cas-
cade, while the KEGG pathway analysis showed enrichment 
across pathways involved in cancer and in the TLR signaling 
pathway. This further confirms a relationship between can-
cer and immunity, as reported previously.34 We validated our 
pathway enrichment analysis by mapping genes in the KEGG 
pathways to the core interaction network. We found that the 
majority of core network members are involved in KEGG 
pathways, as illustrated in Figure S1.

We constructed the Trp53 network, a mouse homolog 
of p53, as shown in Figure S2, and found that many 
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Figure 2. Interactions protein ratio (IPR) during immune response. 
The figure shows the behavior of IPR from 0.5 hours to 24 hours after LPS stimulation for up-regulated genes, down-regulated genes, and random 
networks. For up-regulated genes, the 1-hour time period has the highest iPR during the immune response.

whose genes showed statistically significant changes in expres-
sion throughout the whole time course of the innate immune 
response. The network of differentially expressed proteins 
consists of 3,379 proteins with 5,472 interactions. We identi-
fied protein modules from this network using MCODE25 and 
scored them, as described in the Methods section.

Four of the functionally significant modules with their 
GO analysis and enriched KEGG pathways are listed in 
Table 2. All 47 modules identified from the differentially 
expressed network are noted in Table S1. Many identified 
modules are listed in the CORUM database, which confirms 
the quality of our data.

Many modules have functions related to immunity. Sev-
eral modules are also enriched for pathways in cancer, such 
as leukemia. A link between innate immunity and cancer has 
been previously reported.34 Among highly significant modules 
is the PRIM1–PRIM2–POLA1–POLA2 module, which has 
a score of 0.61. This module is listed in CORUM28 database. 
Another example is the SAP30–SIN3B–IFRD1 module, 
which has a score of 0.28 and forms a part of a bigger complex 
in the CORUM database. The JAK-STAT module has a score 
of 0.7. In addition, the CCR3–CCR5–CCL4–CCBP com-
plex has a score of 0.535. A few of the identified modules have 
high scores, but they do not have significant GO enrichment. 
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response. Moreover, the TICAM1–TBK1–TRAF6–TLR3 
complex exists in the 16-hour–24-hour differential network, 
with all of its subunits up-regulated. Identified modules also 
showed changes in their expression behavior. For example, the 
TICAM1–TBK1–TRAF6–TLR3 module was identified at 
0.5 hours, where TLR3 is significantly down-regulated. How-
ever, the same modules identified at 16 hours showed that Tlr3 
was significantly up-regulated. TICAM1 was significantly up-
regulated at both 0.5 hours and 16 hours. In the 6-hour–8-hour 
differential network, we identified a protein complex that is 
related to circadian rhythms and consists of the CRy2–PER3–
PER2 subunits. This complex is down-regulated during innate 
immune responses and shows up-regulation beginning at 
16 hours after stimulation. The CRy2–PER3–PER2 module 
has a score of 0.89, indicating that it is highly significant. From 
modules that were functionally identified during the innate 
immune response, we summarized their interactome dynamics 
during the immune response in terms of their biological pro-
cesses (as per GO terms), as noted in Table 4.

Pairwise differential matrix (PwdM). For a more effi-
cient visualization of the differences or similarities between 
the PPI maps at different time points throughout the immune 
response, we introduced the PWDM, which quantified the 
changes between networks at any two time points, allowing 
for a global view of these changes.

PWDM can be used to assess the differences between 
different networks. In this study, we used PWDM to assess 
the differences between time-specific networks throughout 
the experimental time course (differential network). We 
quantified these changes as changes in the number of nodes or 
interactions. The asymmetry of the heatmap can be explained 
by considering Figure 1. If we have two networks (A and B), 
the differential network A–B is different from the differen-
tial network B–A, as the interactions specific to network A 
are different from the interactions specific to network B. The 
PWDM heatmap showed that the half-hour network is the 
most different from other networks during the innate immune 
response. It also showed that the largest changes in the inter-
actome between each of the two successive networks occurs 
at the transition from 0.5 hours to 1 hour. Figure 4 shows the 
heatmap for changes in interactions between time-specific 
networks. This is in line with the IPR values, which indicate 
that the networks show the greatest perturbation at 1 hour.

Twenty-four hours after the stimulation of DC with LPS, 
the differences between the time-specific networks for each 
consecutive time point were the least pronounced at succes-
sive time points, with the exception of the transition between 
0.5 hours to 1 hour. The half-hour network showed a greater 
difference with respect to the other time-specific networks 
(Fig. 4). All of the differences were normalized and trans-
formed to Z-scores.

toll-like receptor (tLr) interactome dynamics. 
TLRs play a crucial role in innate immunity. Mice have 
12 TLRs, which are TLR1–TLR9, and TLR11–TLR13, 

table 2. Four identified protein modules from network of 
differentially expressed proteins with their Go biological processes 
and KeGG pathways.

moDulE go FunCtIon PathWaY

Synaptic transmission SnaRe interac-
tions 
in vesicular 
transport

transmission of nerve impulse

Cell-cell signaling

neurotransmitter secretion

Regulation of cell cycle P53 signaling 
pathway

Cell cycle Cell cycle

Phosphorylation

Blood vessel development

transforming growth factor best 
receptor signaling pathway

Cytokine-cy-
tokine receptor 
interaction

transmembrane receptor protein 
serine/threonine kinase signaling 
pathway

Pancreatic 
cancer

Phosphorylation

response to cholestrol

response to lipid Chronic myeloid 
leukemiaPalate development

Circadian rhythm Circadian rhythm

Rhythmatic process

transcription

Response to dna damage 
stimulus

Negative regulation of gene 
–specific 
transcription

 

Trp53 interactors are differentially expressed due to LPS 
stimulation, which further confirms a relationship between 
the p53 pathway and LPS stimulation.

differential networks. We constructed eight differential 
maps from nine PPI networks and identified protein com-
plexes (modules) from each differential map, as described in 
the Methods section. Differential maps have been previously 
introduced in Bandyopadhyay et al.35 Modules identified from 
the 0.5-hour–1-hour differential network with enriched GO 
biological process terms and KEGG pathways are noted in 
Table 3. Modules identified from other differential networks 
are noted in Table S3. For instance, the 0.5-hour network was 
characterized by down-regulation of the protein complex, which 
consisted of SyT1–CLSTN1–SyP–VAMP2–ATP60A1 sub-
units. This module is responsible for transmission of nerve 
impulse and cell–cell signaling. In addition, 0.5 hours after 
stimulation, interactome was characterized by up-regulation of 
the TICAM1/TBK1/TRAF6 subunits of a protein complex 
that consists of TICAM1–TBK1–TRAF6–TLR3. This protein 
module has an extremely important role in the innate immune 
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where TLR10 is not functional. However, humans have ten 
TLRs (TLR1–TLR10).7 We constructed a TLR network 
from all of the available mouse PPIs in our dataset. The net-
work included eight TLRs (TLR2, TLR3, TLR4, TLR6, 
TLR7, TLR8, TLR9, and TLR13) with their interactors. 
We constructed a network of 49 proteins and 66 interac-
tions. The heatmap of the TLR network members is shown 
in Figure 5. The TLR subnetwork dynamics are shown in 

Figure 6. The TLR subnetworks across the different time 
points during the innate immune response are noted in 
Figure S3.

We found that half an hour after stimulation, TLR3 
was significantly down-regulated, while Ticam1 was sig-
nificantly up-regulated. At 1 hour after stimulation, TLR2, 
SRC, and BIRC3 were significantly up-regulated. However, 
2 hours after stimulation, TLR2, TLR3, TLR6, TLR7, SRC, 
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Figure 3. Core interaction network for proteins and their interactions, which are common to all time points during the immune response. 
the node color represents gene expression, the edge color represents gene co-expression, the node size corresponds to the node degree, which is the 
number of interactions that the protein has. the node border represents whether a gene is differentially expressed or not during the immune response.
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CAV1, and BIRC3 showed significant up-regulation, while 
S100A8 showed significant down-regulation. Table 5 sum-
marizes significant up-/down-regulations in TLR interac-
tomes during the innate immune response.

Interleukin subnetwork. In order to study cytokine 
subnetworks, we constructed an interleukin (IL) subnetwork 
(Fig. 7). IL12 is a cytokine known to have an inhibitory effect 
on tumorigenesis. It is also known to induce the regression of 

table 3. Four identified modules from the 0.5-hour–1-hour differential network with their GO biological processes and KEGG pathways.

DIFFErEntIal 
nEtWork

sCorE moDulE go PathWaY

0.5h–1h 0.426 synaptic transmission –

transmission of nerve impulse

cell-cell signaling

neurological system process

regulation of neurotransmitter levels

generation of a signal involved in cell-cell signaling

secretion by cell

membrane organization

0.39 positive regulation of cytokine biosynthetic process toll-like receptor signaling 
pathwaypositive regulation of interferon-beta biosynthetic 

process

regulation of cytokine production

regulation of interferon-beta production

regulation of type i interferon production

regulation of interleukin-6 production

immune response

positive regulation of macromolecule biosynthetic 
process

positive regulation of response to stimulus

positive regulation of chemokine biosynthetic process

activation of innate immune response RiG-i-like receptor 
signaling pathwaypositive regulation of tumor necrosis factor production

positive regulation of interleukin-6 production

positive regulation of NF-kappaB transcription factor 
activity

positive regulation of I-kappaB kinase/NF-kappaB 
cascade

positive regulation of transcription factor activity

myeloid leukocyte activation

positive regulation of defense response

response to virus

positive regulation of protein kinase cascade

response to bacterium

induction of apoptosis

positive regulation of signal transduction

inflammatory response

response to wounding

0.2 transcription Basal transcription factors

histone H4 acetylation

protein amino acid acetylation

protein amino acid acylation

covalent chromatin modification

chromosome organization
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tumors.36 In this study, we found the significant up-regulation 
of IL12 after LPS stimulation, which is in agreement with a 
previous study.37 We further expanded the networks, as evi-
dent in Figure S4.

Network expansion is more informative, as it allows for 
the extraction of protein complexes from the network, which 
is not possible in smaller networks.

s100A8 down-regulation after LPs stimulation. 
S100A8, which is called calgranulin A or migration inhibitor 
factor-related protein 8, and S100A9 (also called calgranulin B), 
are members of the S100 calcium-binding protein family. 
S100A8 and S100A9 showed up-regulation in many inflam-
matory and autoimmune cases.38,39 S100A8 and S100A9 form 
a protein complex, which is generally known to play an inflam-
matory role. However, there are previous studies that suggested 
an anti-inflammatory role and immune-regulatory role for the 
S100A8/A9 complex.40–42 The modulation of inflammatory 
processes by the S100A8/A9 complex is both context- and 
cell-type-specific, which suggests that there is a complex net-
work of regulation at play. The S100A8/A9 complex has both 
intracellular and extracellular functions. Among the intracel-
lular functions is calcium binding.38,39 Released S100A8/A9 
achieves extracellular functions, some of which are mediated 

by TLR4.43 A previous study reported that S100A9 over-
expression blocks DC differentiation.44 In addition, it showed 
that those DCs that over-express S100A8/A9 have less abil-
ity to stimulate allogeneic T-cell proliferation than control 
DCs.43 S100A8 showed down-regulation during differentia-
tion of DCs,44 but in this study, we found down-regulation of 
S100A8 following LPS stimulation. The down-regulation is 
more than fourfold from 2 hours~24 hours after LPS stimula-
tion, as shown in Figure 4.

We constructed a subnetwork of three members of 
the S100 protein family (S100A8,S100A9, and S100A10), 
as illustrated in Figure 8. We found that there is a high 
correlation in the co-expression of S100A8 and S100A9 pro-
teins, which is consistent with the properties of the subunits 
of a complex. S100A9 only interacts with S100A8; however, 
S100A8 interacts with S100A9, Ly96, and TLR4 (as is evi-
dent in the S100A8/A9 subnetwork). The S100A10 protein, 
which is another member of the S100 protein family, inter-
acts with Irak1, an important player in the TLR signaling 
pathways. We checked the co-expression of Zc3h12a with 
S100a8. Zc3h12 is a ribonuclease, and has an important role 
in controlling innate immune responses.45 We found that 
there is a high co-expression of these two genes (r = 0.66), 

table 4. Summary of interactome dynamics during the immune response in terms of Go terms for biological processes.

0.5hr 1hr 2hr 3hr 4hr 6hr 8hr 16hr

uP • Immune 
response

• Initiation of  
t cell

• Stress-activated 
protein

• Regulation of  
cell

•Protein •Transport • Jak-STAT cas-
cade involved 
in growth

•Activation of

• Cytokine 
production

activation and kinase signaling 
pathway

cycle kinase • Membrane/
cytoskeleton

hormone sig-
naling pathway

innate 
immune

• Interferon-
beta

differentiation • MAPKKK 
cascade

•rRNA cascade organization • Proteolysis, 
ubiquitination

response

 production 
• Type I 
interferon 
production

• Response to 
stimulus

• IL-6 
production

• Positive 
regulation

• Response to 
stimulus

• Calcium medi-
ated signaling

• Peptidyl-tyrosine 
phosphorylation

•Phosphorylation transcription 
• Negative regula-
tion of cell growth

•Apoptosis

• NF-kappaB  
TF activity 
JAK-Stat 
cascade

• Cytokine 
mediated sig-
naling pathway

• Defense 
response

• Cytokine 
production

• Positive 
regulation 
of nF-  
kappaB 
transcription

  of nF-kappaB 
transcription 
factor activity

• Defense 
response

  factor 
activity

• Myeloid 
leukocyte 
activation

• Cytokine 
mediated 
signaling 
pathway

down • Cell-cell 
signaling.

• Secretion by 
cell

• Transmis-
sion of nerve 
impulse

•DNA replication 
•Transcription

• Negative regula-
tion of gene spe-
cific transcription

•Circadian rhythm

myeloid cell 
differentiation
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Figure 4. Pairwise differential matrix (PWDM). 
Global overview of the interactome dynamics during the immune response. The heatmap shows the differences between the networks at different time 
points during the innate immune response, while each cell represents the difference (unique interactions) between the PPI network in a given row and a 
corresponding network in a given column.
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Figure 5. Heatmap of the tlR network genes during the time course after lPS stimulation. 
the red color is for up-regulated genes, and the blue color is for down-regulated genes. the heatmap shows the gene expression of tlR network genes 
during the immune response. the X-axis represents the time in hours after the stimulation of dendritic cells.
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Gene expression Gene coexpression

Down Not differentially expressed Differentially expressedUp Low High

0.5 hr 1 hr 6 hr

Figure 6. the tlR interactome dynamics. 
the tlR subnetworks at different time points during the immune response. the node color represents gene expression, the edge color represents gene 
co-expression, node border represents whether a gene is differentially expressed or not during the immune response (as in the color key). The TLR genes 
have a green font, so they can be distinguished from other genes. Gene expression is different at different time points during the immune response. For 
example, TLR3 was down-regulated at 0.5 hours, followed by a slight up-regulation at 1 hour, and significant up-regulation at 6 hours.

which may indicate a possible functional association between 
them.

discussion
The goal of this study was to investigate interactome dynam-
ics during the innate immune response. To achieve this goal, 
PPI data was combined with time series gene expression data. 
Combining PPIs with expression data is a well-established 
technique. One advantage of combining expression and PPI 
data is that it improves data reliability, as results supported 
by both expression and interaction data are more likely to 
be correct than results supported from either expression or 
interaction data alone.46 To our best knowledge, this is the 
first study to infer innate immunity interactome dynamics by 
combining protein–protein interaction data with time series 
gene expression data followed by the identification of protein 
complexes.

Module identification is an essential step in network 
analysis, as protein subunits that form a protein complex have 
a higher probability of interacting with each other, and they 
have higher functional dependencies compared to other pro-
teins in a network.47 Understanding how protein complexes 

are arranged in the protein interaction network will increase 
our understanding of the coordination of cellular and bio-
logical processes.47 Therefore, identifying protein complexes/
modules in a protein interaction network will highlight the 
proteins that have physical and functional dependencies in a 
given network. When identifying interactome dynamics dur-
ing the innate immune response, we considered the dynamics 
from two points of view: First, we identified protein modules 
in a differentially expressed network. We found that some 
identified modules have a role in innate immunity, cell cycle, 
signaling, phosphorylation, transcription, deoxyribonucleic 
acid (DNA) repair, chromosome organization, transport, 
development, and differentiation. In addition, some modules 
showed enrichment of the p53 pathway, as well as the path-
ways involved in cancer (such as colorectal cancer and acute 
myeloid leukemia). A previous study suggested the existence 
of specific features of innate immunity mediated by TLRs in 
tumors; this needs further investigation.48

A direct interaction between cancer and the innate 
immune system has been reported.10,34 Different immune 
cells (including DCs, which are antigen-presenting cells) tar-
get cancer cells directly, acting as the bridge between innate 
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Figure 7. interleukin subnetwork. 
The hexagonal nodes represent the elements of the interleukin subnetwork that can be mapped to genes involved in the KEGG pathways. Differentially 
expressed genes have a red border, while the edge color shows gene co-expression.

table 5. Significantly up-/down-regulated proteins at each time point in the TLR interactome.

0.5hr 1hr 2hr 3hr 4hr 6hr 8hr 16hr 24hr

tlr2 tlr2
tlr6 tlr6 tlr6 tlr6 tlr6 tlr6 tlr6

Birc3 Birc3
tlr3 tlr3 tlr3 tlr3 tlr3 tlr3 tlr3

tlr7 tlr7 tlr7 tlr7 tlr7

Cav1 Cav1 Cav1
tlr9 tlr9 tlr9 tlr9

ticam1 ticam1
src src src src src src src src

Cd180 Cd180 Cd180
myd88

traf6
Clec7a Clec7a Clec7a Clec7a

Prkcz
s100a8 s100a8 s100a8 s100a8 s100a8 s100a8 s100a8

Birc2
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and adaptive immunity and phagocytose apoptotic cancer 
cells.10 Furthermore, TLRs play a role in sensing the endog-
enous molecules released from apoptotic cells.7,10 In addition, 
some identified modules from the differentially expressed 
network play a role in circadian rhythms (Table 2). A previ-
ous review had discussed a link between circadian rhythms 
and immunity.49 Second, we identified protein modules 
specific to a certain time point. For instance, the half-hour 
time point following stimulation was characterized by up-
regulation of the gene-encoding proteins that were respon-
sible for the innate immune response, cytokine production, 
interferon-beta production, IL-6 production, positive regula-
tion of nuclear factor-kappa B transcription factor activity, 
and down-regulation of cell–cell signaling and transmission 
of the nerve impulse.

This study also introduces protein complexes as candi-
dates that play a role in the innate immune response. However, 
identified protein modules need further experimental valida-
tion. This study can be used to predict the immune stage 
of a patient. This study also introduced PWDM, which is 
a novel way to assess the differences between different net-
works either in terms of the number of proteins or their 
interactions.

This study is based on an assumption that change in gene 
expression could reflect the change in protein abundance. 
A previous report50 has proposed that the interactome can 
be affected due to changes in the abundance, sequence, or 

posttranslational modification changes in an individual pro-
tein. There is a possibility that interactions in modules with 
small average Pearson Correlation Coefficient are transient, 
occurring only at a certain time point. In addition, another 
study has reported that changes in human transcriptome can 
result in significant changes in interactome.51 Future studies 
should consider adding various parameters like post-transla-
tional modification data to increase data reliability.

In addition, this study investigated the TLR network in 
a comprehensive way in terms of an interaction network-based 
analysis for the TLR-subnetwork. One of the limitations for 
this kind of study is the quality of PPI data. Some of the data 
in manually curated databases include some protein–DNA 
interactions that are stored as PPIs. Cleaner PPI databases 
will help improve such analyses. In addition, PPI databases 
include many spurious interactions that come from high 
throughput experiments.

conclusion
This study has focused on an analysis of the dynamics of an innate 
immunity interactome, and it has identified protein modules that 
contain differentially expressed proteins. In addition, we identi-
fied protein modules that contain up-/down-regulated proteins 
specific to each time point in innate immune responses, as well 
as the biological roles and pathways involved in each module. 
We introduced IPR, which identifies the time point at which the 
least number of proteins with the largest number of interactions 

Gene expression Gene coexpression

Down

Not differentially expressed Differentially expressed

Up Low High

Figure 8. S100a8/a9 and S100a10 protein subnetworks. 
the subnetworks show the interacting couplings of the S100a8, S100a9, and a100a10 proteins. node color represents gene expression, edge color 
represents gene co-expression, and the node border represents whether a gene is differentially expressed or not during the immune response.
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are up-/down-regulated. We also introduced PWDM, which 
allows for a global view of the differences between different net-
works. In this study, IPR identified 1 hour as the time point 
at which the least number of proteins with the greatest number 
of interactions were noted to be up-/down-regulated. We also 
found that the S100A8 protein is down-regulated during the 
innate immune response in DCs after LPS stimulation. Thus, 
we conclude that our analysis has helped in the understanding of 
the dynamic nature of the innate immune response.
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