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Complexes of physically interacting proteins constitute fundamental functional units responsible
for driving biological processes within cells. A faithful reconstruction of the entire set of complexes
is therefore essential to understand the functional organisation of cells. In this review, we discuss
the key contributions of computational methods developed till date (approximately between 2003
and 2015) for identifying complexes from the network of interacting proteins (PPI network). We
evaluate in depth the performance of these methods on PPI datasets from yeast, and highlight their
limitations and challenges, in particular at detecting sparse and small or sub-complexes and
discerning overlapping complexes. We describe methods for integrating diverse information includ-
ing expression profiles and 3D structures of proteins with PPI networks to understand the dynamics
of complex formation, for instance, of time-based assembly of complex subunits and formation of
fuzzy complexes from intrinsically disordered proteins. Finally, we discuss methods for identifying
dysfunctional complexes in human diseases, an application that is proving invaluable to understand
disease mechanisms and to discover novel therapeutic targets. We hope this review aptly commem-
orates a decade of research on computational prediction of complexes and constitutes a valuable
reference for further advancements in this exciting area.
� 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Most biological processes within cells are carried out by pro-
teins that physically interact to form stoichiometrically stable com-
plexes. Even in the relatively simple model organism Saccharomyces
cerevisiae (budding yeast), these complexes are composed of sev-
eral subunits that work in a concerted manner. These complexes
interact with individual proteins and other complexes to form
functional modules and signalling pathways that drive the cellular
machinery. Therefore, a faithful reconstruction of the entire set of
complexes is essential not only to understand complex formation
but also the higher level functional organisation of cells.

High-throughput experimental systems including yeast two-
hybrid (Y2H), tandem affinity purification followed by mass spec-
trometry (TAP-MS) and protein complementation assay (PCA) have
mapped a considerable fraction of interactions from model organ-
isms including S. cerevisiae [1–7], Drosophila melanogaster [8,9] and
Caenorhabditis elegans [10], thereby fuelling computational
methods to systematically analyse these large-scale interaction
data. Beginning from classical methods by Spirin and Mirny [11]
and Bader and Hogue [12] that work primarily by clustering the
network of protein interactions (PPI network), computational
methods have come a long way, and current methods integrate
diverse information with PPI networks to predict complexes.
These methods have been tested extensively on data from model
organisms [13,14], and are currently being extended to identify
and catalogue complexes from less extensively mapped organisms
including Homo sapiens [15].

Protein complexes represent modular functional units within
the PPI network [11]. From a biological perspective, this modular-
ity ensures division of labour and provides robustness against
mutation and chemical attacks [16]. From a topological perspec-
tive, this modularity represents densely connected groups of pro-
teins that function as complexes [17]. Most methods identify
complexes by mining modular or dense subnetworks from PPI net-
works. While this general strategy looks straightforward, these
methods are severely restricted by limitations in existing PPI data-
sets, in particular by the lack of sufficient interactions between
‘‘complexed’’ proteins and the presence of a large number of
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false-positive (noisy) interactions [18,19]. Therefore, increasing the
interaction coverage by integrating PPI datasets from multiple
studies and reducing the noise by assessing the reliabilities of
interactions (scoring of PPIs) [20–22] are crucial for accurate com-
plex detection. To summarise, computational identification of
complexes from experimental datasets involves the following
steps:

(i) Integrating interactions from multiple experiments and
assessing the reliabilities of these interactions;

(ii) Constructing a reliable PPI network using only the high-con-
fidence interactions;

(iii) Identifying modular subnetworks from the PPI network to
generate a candidate list of complexes; and

(iv) Evaluating these candidate complexes against bona fide
complexes and validating and assigning roles for novel
complexes.

Over the last 10 years, more than 20 different methods have
been proposed in the literature for complex prediction from PPI
networks. From time-to-time, surveys have evaluated these meth-
ods on datasets available at the time. For example, one of the ear-
liest comprehensive evaluation of methods were by Brohee and
van Helden [23] and Vlasblom and Wodak [24], who compared
these methods on yeast Y2H datasets. Subsequently, Li et al. [13]
and Srihari and Leong [14] presented a more exhaustive evaluation
by including raw and scored yeast datasets from TAP-MS and PCA
studies [6,7,25]. More recently, Yong and Wong [26] studied these
methods specifically for the deconvolution of overlapping com-
plexes in dense regions of PPI networks, the recovery of complexes
in sparse regions of PPI networks, and the recovery of small com-
plexes in PPI networks. With increasing coverage for human PPI
datasets [27–30] these methods are now being applied to predict
human complexes [15].

The resources for bona fide complexes against which predicted
complexes are evaluated have also expanded over the years. For
example, the Munich Information Centre for Protein Sequences
(MIPS) (http://mips.helmholtz-muenchen.de/proj/ppi/) [31] and
the Curated Yeast Complexes (CYC) 2008 (http://wodaklab.org/cy-
c2008/) [32] databases contain more than 400 experimentally val-
idated complexes for yeast, whereas COmprehensive ResoUrce of
Mammalian protein complexes (CORUM) (http://mips.helmholtz-
muenchen.de/genre/proj/corum) [33] contains over 2000 validated
‘core’ mammalian complexes. Predicted complexes that have been
subsequently validated have in turn contributed several novel
complexes to these catalogues (e.g. http://human.med.utoronto.
ca/) [15].

The ability to predict complexes from multiple species makes it
is possible to examine the reorganisation and rewiring of com-
plexes between these species, and thereby estimate the evolution-
ary conservation of complexes [9]. This could potentially have far-
reaching implications, for example, in translating therapeutically
relevant observations from model organisms to human [34,35].
For example, Nguyen et al. [36] note that rewiring and reorganisa-
tion of complexes from yeast to human can affect the transfer of
synthetic lethality (SL) relationships between genes identified in
yeast [37] to human; SL relationships are of therapeutic value in
the context of human cancers [38].

Similarly, complexes predicted across disease conditions have
revealed extensive rewiring (differential wiring) between these
conditions, thereby highlighting key targetable avenues for these
diseases [39]. By focusing on rewiring within complexes rather
than of the entire PPI network definite dysfunctional regions could
be located, thus identifying therapeutically targetable proteins.

Considering the valuable contributions of complex prediction
methods, here we put together an extensive survey of methods
developed to date (approximately between 2003 and 2015) and
evaluate their performance on yeast PPI datasets. We build on ear-
lier surveys [13,14,26] so as not to entirely repeat their findings,
but discuss challenges faced by methods more lately, in particular
detection of sub- or small and sparse complexes and discerning of
overlapping complexes. We discuss these methods in the context
of evolutionary conservation of complexes between species. By
covering methods that integrate diverse information including
gene expression and 3D structures of proteins with PPI networks,
we discuss the dynamics of complex formation. Finally, we
describe methods to identify dysfunctional complexes in human
diseases, an application that is proving invaluable to understand
disease mechanisms and to discover novel therapeutic targets.
2. Review of methods for complex prediction from PPI
networks

Although in general, most methods rely on the assumption that
protein complexes are embedded as densely connected proteins
within the PPI network, these methods vary considerably in their
algorithmic strategies and auxiliary biological information
employed to identify complexes. Accordingly, these methods have
been classified (Table 1) [14] as (i) those based solely on PPI net-
work topology; and (ii) those based on PPI network topology and
additional biological insights. By incorporating functional, struc-
tural, organisational or temporal information, these methods over-
come some of the limitations of experimental datasets, in
particular the presence of noise, thereby improving complex pre-
diction. Several of these methods are available as easy-to-run com-
mand-line programs or Cytoscape [40] plug-ins (Table 1).

To begin, a PPI network is modelled as an undirected graph
G = (V,E) where V is the set of proteins and E = {(u,v): u, v 2 V} is
the set of interactions between these proteins. For a protein
v 2 V, the set of neighbours of v is N(v) and the degree of v is
deg(v) = |N(v)|. The interaction density of a subgraph G0(V0,E0) of G

is 2jE0 j
jV 0 j:ðjV 0 j�1Þ.

2.1. Methods based solely on network clustering

Methods based solely on the topology of PPI network look for
dense subnetworks or clusters in the network to identify candidate
complexes. While some of these methods adopt an agglomerative
approach by beginning with singleton or small sets of proteins
and growing these sets based on certain cost criteria, some others
adopt a partitioning approach by repeatedly breaking down larger
clusters into smaller clusters.

2.1.1. Molecular COmplex Detection (MCODE)
MCODE [12] is one of the first computational methods for

predicting complexes from PPI networks. MCODE adopts an
agglomerative approach that works in three stages: protein
(vertex) weighting, complex extraction and an optional post-
processing of complexes.

In the first stage, each protein v in the network G = (V,E) is
weighted based on the core-clustering density of v, which is mea-
sured as the clustering coefficient of the highest k-core in the
neighbourhood of v. In the second stage, the protein s with the
highest clustering density is used to seed a complex. MCODE then
recursively moves outward from s by including proteins into the
complex whose weights are a given percentage (vertex weight
parameter) away from that of s. This process stops when there
are no more proteins to be added to the complex. If there are seed
vertices still available, new complexes are seeded and expanded in
a similar manner. The optional third stage performs a post-
processing by including proteins from the neighbourhood regions
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Table 1
Methods for protein complex prediction from protein interaction networks. Associated softwares are available as Cytoscape [40] plug-ins (Cy), command line programs (CL) or as
online (OL) web servers under the mentioned links.

Classification Method Availability (URL) Reference

Solely network clustering MCODE (Cy) http://apps.cytoscape.org/apps/mcode [12]
MCL (Cy, CL) http://micans.org/mcl/r [41–43]

http://apps.cytoscape.org/apps/clustermake
CMC (CL) https://www.comp.nus.edu.sg/~wongls/projects/complexprediction/CMC-26may09/ [45]
ClusterONE (Cy) http://apps.cytoscape.org/apps/clusterone [49]
HACO (CL) http://www.bio.ifi.lmu.de/Complexes/ProCope/ [44,50]
PPSampler (CL) http://imi.kyushu-u.ac.jp/~om/PPSamplerVer1.2/PPSamplerVer1_2.exe [72]

Core-attachment structure CORE (CL) http://alse.cs.hku.hk/complexes/ [54]
COACH (CL) http://www1.i2r.a-star.edu.sg/~xlli/coach.zip [55]
MCL-CAw (CL) https://sites.google.com/site/mclcaw/ [56,57]

Functional information RNSC (CL) http://www.cs.utoronto.ca/~juris/data/ppi04/ [59]
PCP (CL) https://www.comp.nus.edu.sg/~wongls/projects/complexprediction/PCP-3aug07/ [61]

Evolutionary information NetworkBLAST (OL) http://www.cs.tau.ac.il/~bnet/networkblast.htm [79,149]
NetworkBLAST-M (CL) http://www.cs.tau.ac.il/~bnet/License-nbm.htm [79,149]
COCIN (CL) https://sites.google.com/site/cocinhy/ [36]

Mutual exclusive interactions SPIN (CL) https://code.google.com/p/simultaneous-pin/ [68]
DACO (CL) http://sourceforge.net/projects/dacoalgorithm/ [70]

Sparse complexes SWC (CL) http://www.comp.nus.edu.sg/~wongls/projects/complexprediction/SWC-31oct14 [53]
Small complexes SSS (CL) http://www.comp.nus.edu.sg/~wongls/projects/complexprediction/sss-3dec2014.zip [75]
Temporal complexes TS-OCD (CL) http://mail.sysu.edu.cn/home/stsddq@mail.sysu.edu.cn/dai/others/TSOCD.zip [99]
Complexes in diseases CONTOUR (CL) https://sites.google.com/site/contourv1/ [39]
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of complexes using a ‘‘fluff’’ parameter: neighbouring proteins
whose clustering density is higher than this parameter are
included into the complexes. The resultant complexes are then
scored and ranked based on their weighted densities.

2.1.2. Markov Clustering (MCL)
MCL [41] is a fast, highly scalable graph clustering method.

Applied initially to cluster protein sequences [42], MCL has proved
effective for clustering large PPI networks due to its scalability
[43,44].

MCL works by simulating random walks (called a flow) to
extract dense regions from the network. To simulate the flow,
MCL iteratively manipulates the adjacency matrix of the network
using two operators, expansion and inflation, that control the
spread and thickness of the flow, respectively. Expansion enables
the flow to reach all regions of the network, whereas inflation con-
trols the contraction of the flow, making the flow thicker in dense
regions and thinner in sparse regions. In each iteration, these
parameters increase the probabilities for the random walks within
clusters (intra-cluster walks) and decrease the probabilities for the
walks between clusters (inter-cluster walks). This process progres-
sively separates out dense regions within the network, ultimately
identifying non-overlapping clusters from the network. Since the
entire process is executed as matrix operations, MCL is fast and
scalable even to large networks.

2.1.3. Clustering based on merging Maximal Cliques (CMC)
CMC [45] works by repeated merging of maximal cliques

extracted from the PPI network. CMC incorporates reliability scores
for PPIs and therefore improves on earlier clique-merging methods,
including CFinder [46] and Local Clique Merging Algorithm (LCMA)
[47], that work only on unscored networks.

CMC begins by enumerating all maximal cliques in the PPI net-
work using the fast search-space pruning-based Cliques algorithm
[48]. Each clique C is assigned a score which is the weighted inter-

action density of C, given by
P

u;m2C
wðu;vÞ

jCj�ðjCj�1Þ . Cliques are ranked in non-

increasing order of their weighted densities. CMC then iteratively
merges highly overlapping cliques based on the extent of their
inter-connectivity. The inter-connectivity I (C1, C2) between two
cliques C1 and C2 is given by:
IðC1;C2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
u2ðC1�C2Þ

P
m2ðC2Þwðu;vÞ

jC1 � C2j � jC2j
�
P

u2ðC2�C1Þ
P

m2ðC1Þwðu; vÞ
jC2 � C1j � jC1j

s

If I (C1, C2) P Tm, a merge threshold, then C2 is merged with C1, or C2

is simply removed if it overlaps significantly with
C1 : jC1 \ C2j=jC2j � To, an overlap threshold. Finally, all merged
clusters are ranked by their weighted densities and output as pre-
dicted complexes. Since CMC takes into account the weights of
interactions, it prioritises more reliable cliques for the merging pro-
cess while eliminating the less reliable ones, thereby discounting
the effects of noise in PPI datasets.

2.1.4. Clustering with Overlapping Neighbourhood Expansion
(ClusterONE)

ClusterONE [49] works similar to MCODE, by seeding and
greedy neighbourhood expansion. ClusterONE first identifies seed
proteins and greedily expands them into groups V based on a cohe-
siveness measure, given by:

f ðVÞ ¼ wðinÞðVÞ
wðinÞðVÞ þwðboundÞðVÞ þ pðVÞ ;

where w(in)(V) is the total weight of interactions within V, w(bound)(V)
is the total weight of interactions connecting V to the rest of the net-
work, and p(V) is a penalty term to model uncertainty in the data
due to missing interactions. At each step, new proteins are included
into V until f(V) does not increase. V is then denoted as a locally
cohesive group. Highly overlapping groups are merged to produce
candidate complexes. Since this step allows for overlapping com-
plexes, ClusterONE enhances the performance of MCODE and MCL.

2.1.5. Hierarchical Agglomerative Clustering with Overlaps (HACO)
HACO [50] modifies the classical hierarchical agglomerative

clustering (HAC) [51] to identify overlapping complexes. The stan-
dard HAC algorithm with average linkage [52] maintains a pool of
candidate sets to be merged. The distance between two non-over-
lapping sets S1 and S2 is given by:

dðS1; S2Þ ¼
1

jS1jjS2j
X

p2S1 ;q2S2

dðp; qÞ:

http://apps.cytoscape.org/apps/mcode
http://micans.org/mcl/r
http://apps.cytoscape.org/apps/clustermake
https://www.comp.nus.edu.sg/~wongls/projects/complexprediction/CMC-26may09/
http://apps.cytoscape.org/apps/clusterone
http://www.bio.ifi.lmu.de/Complexes/ProCope/
http://imi.kyushu-u.ac.jp/~om/PPSamplerVer1.2/PPSamplerVer1_2.exe
http://alse.cs.hku.hk/complexes/
http://www1.i2r.a-star.edu.sg/~xlli/coach.zip
https://sites.google.com/site/mclcaw/
http://www.cs.utoronto.ca/~juris/data/ppi04/
https://www.comp.nus.edu.sg/~wongls/projects/complexprediction/PCP-3aug07/
http://www.cs.tau.ac.il/~bnet/networkblast.htm
http://www.cs.tau.ac.il/~bnet/License-nbm.htm
https://sites.google.com/site/cocinhy/
https://code.google.com/p/simultaneous-pin/
http://sourceforge.net/projects/dacoalgorithm/
http://www.comp.nus.edu.sg/~wongls/projects/complexprediction/SWC-31oct14
http://www.comp.nus.edu.sg/~wongls/projects/complexprediction/sss-3dec2014.zip
http://mail.sysu.edu.cn/home/stsddq@mail.sysu.edu.cn/dai/others/TSOCD.zip
https://sites.google.com/site/contourv1/


S. Srihari et al. / FEBS Letters 589 (2015) 2590–2602 2593
where d(p,q) is the negative of the affinity between proteins p and q.
In each step of HAC, two non-overlapping sets S1 and S2 with the
closest distance are iteratively merged to generate a new set S12,
while S1 and S2 are removed. The algorithm terminates when there
are no remaining sets to merge.

In HACO, the sets S1 and S2 are retained for later use as required,
the intuition being that if there is another set S3 whose distance to
S1 is only slightly greater than that of S2 then the decision to merge
S1 and S2 could be arbitrary and unstable. In this case, HACO pro-
duces two merged sets S12 and S13 by retaining S1 based on a diver-
gence decision: if S1 is considerably different from S12 then S1 is
retained (in order to generate S13), otherwise S1 is removed while
keeping S12. This procedure results therefore in overlapping
complexes.

2.1.6. Ensemble clustering
Yong et al. [53] developed that an ensemble clustering approach

to aggregate clusters generated from multiple clustering algo-
rithms (including MCL, CMC, ClusterONE and HACO) using a major-
ity voting-based scoring. The intuition behind aggregating clusters
from different methods is to improve the coverage of complexes
while maintaining the quality of the resultant clusters by scoring
higher those predicted by multiple methods.

2.2. Methods based on network clustering combined with biological
insights

Incorporating auxiliary information with the analysis of PPI net-
works overcomes some of the inherent limitations of PPI datasets,
in particular noise, thus enhancing the performance of complex
prediction methods.

2.2.1. Methods incorporating core-attachment structure
CORE [54], COACH [55], MCL-CAw [56,57] and CACHET [58]

look for clusters that adhere to the core-attachment organisation,
noted originally in yeast complexes by Gavin et al. [6]. Large-scale
pull-down of yeast complexes using TAP-MS in [6] revealed that
proteins within complexes are organised as two distinct sets: cores
that constitute central functional units of complexes, and attach-
ments that aid core proteins in their functions. Consequently, by
specifically looking for clusters that adhere to this organisation,
complexes could be identified with better accuracies.

In CORE [54], the probability for two proteins u and v with
degrees du and dv, respectively, to belong to the same core is deter-
mined by the number of common neighbours jNðduÞ \ Nðdv Þj
between u and v. The probability that u and v have at least m com-
mon neighbours participating in i interactions is computed under
the null hypothesis that du interactions connecting u and dv inter-
actions connecting v are assigned to random neighbours in the PPI
network. This probability is used to arrive at a P-value for u and v
to belong to the same core, given by:

P valueðu;vÞ ¼ Prð� i interactions and � m neighboursÞ
¼

X
i�j�jEj;m�k�minfd1 ;d2g�j

PinteractðjjjV j;d1;d2Þ � PcommonðkjjV j;d1;d2; jÞ;

where Pinteract and Pcommon are computed under the null hypothesis.
The P-value for (u,v) is then compared to P-values from all pairs
involving u and v, and if (u,v) is ranked the highest among all these
pairs (i.e., (u,v) has the lowest P-value), then (u,v) is considered to
belong to a two-core {u,v}.

CORE then repeatedly merges cores of sizes two, three and so on
until further increase in core size is not possible, to produce the
final set of cores. Subsequently, a protein p is added as an attach-
ment to a core if p interacts with at least half the members of
the core, to produce a complex.
COACH [55] works by identifying small dense neighbourhoods
around proteins with high degrees in the PPI network. These dense
subnetworks are then merged to generate cores. Attachments are
added to these cores in a similar way as CORE to produce
complexes.

MCL-CAw [56,57], on the other hand, refines clusters produced
from MCL [41] by identifying core and attachment sets of proteins
within each cluster to build complexes. A set of densely connected
proteins within each MCL cluster is designated as a core, and
attachment proteins are then included based on their connectivity
to this core to produce a complex. MCL-CAw ensures that these
attachment proteins can originate from outside the cluster and
can be assigned to multiple cores, thus allowing for overlapping
complexes.

CACHET [58] is different from the above methods in that it is
specialised for reliability-weighted bipartite graphs of bait-prey
interactions produced from TAP experiments. TAP uses immo-
bilised baits proteins to capture prey proteins that interact, thus
preserving co-complex relationships among these proteins; such
relationships are typically lost when the TAP data are converted
to pairwise interactions in PPI networks. CACHET first extracts
maximal non-overlapping bicliques from the input bipartite graph
as cores, and then assembles, in a similar way as CORE, the attach-
ment proteins of these cores.

2.2.2. Methods incorporating functional information
Proteins within a complex are generally enriched for the same

or similar functions. Therefore, combining functional annotations
for proteins where available with the topology of PPI networks
could improve complex identification. Following on this idea, the
Restricted Neighbourhood Search Clustering (RNSC) [59], Dense
neighbourhood Extraction using Connectivity and conFidence
Features (DECAFF) [60] and Protein Complex Prediction (PCP)
[61] make use of functional annotations from Gene Ontology [62]
to predict complexes.

RNSC [59] employs a cost minimisation strategy to partition the
PPI network by iteratively moving proteins between clusters until
an integer-valued cost function is optimised. To prevent settling
into poor local minima, RNSC periodically shuffles the clustering
by dispersing the contents of a cluster at random. Finally, RNSC
assigns a P-value to each of the clusters based on the functional
coherence of the constituent proteins, and outputs only the clus-
ters with P < 0.001 as the list of complexes. DECAFF [60] follows
a clique-identification and merging procedure to identify clusters
from the PPI network, and then filters these clusters using func-
tional coherence of the proteins. On the other hand, PCP [61] uses
the functional annotations to assign weights to interactions in the
network, and uses these weighted interactions to cluster the net-
work based on clique merging to generate complexes.

2.3. Comparative assessment of complex detection methods

Here we compare some of the complex prediction methods
described above for predicting complexes from the yeast interac-
tome. We obtain PPI data by combining physical interactions from
the BioGRID [27], IntAct [63,64] and MINT [65] repositories. These
repositories catalogue interactions detected from a multitude of
studies, e.g. [1,2] (which employ Y2H), [5] (PCA) and [6,7] (TAP-
MS). To assess the reliabilities of these interactions detected using
different experimental techniques, we compute the reliability for
each pair against a common independent criteria; here using sim-
ilarities between Gene Ontology [62] annotations for these pro-
teins. Specifically, each interaction (a,b) is weighted using a
metric based on the number and the type of experiments that
detected the interaction, given by:
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Reliability weight ða; bÞ ¼ 1�
Y

i2Ea;b

ð1� reliÞni;a;b ;

where Ea,b is the set of experimental technique that detected inter-
action (a,b); reli is the estimated reliability of experimental tech-
nique i calculated as the fraction of interactions detected by i
such that both partners share at least one high-level Cellular
Component term from Gene Ontology [62]; and ni,a,b is the number
of times that experimental technique i detected interaction (a,b). A
weighted PPI network was constructed using the top 20000 interac-
tions, covering 3680 proteins (average node degree 10.87).

A predicted complex (or a cluster) P matches a known complex
C if the Jaccard similarity between P and C, Jaccard (P,C) P 0.5,
where:

Jaccard ðP;CÞ ¼ jP \ Cj
jP [ Cj

Given the set of reference complexes C = {C1, C2, . . .Cn}, the
precision, recall, and F-score of a set of predicted clusters
P = {P1, P2, . . .Pm} are given by:

Precision ¼

���fPi�Pj9Cj 2 C; Pi matchesCjg
���

jPj

Recall ¼

���fCi 2 Cj9Pj 2 P; Pj matches Cig
���

jCj

F ¼ 2 � Precision � Recall
Precisionþ Recall

Predicted complexes are scored by their weighted densities and
ranked. We calculate the area under the curve (AUC) of the preci-
sion–recall curve.

We employ the CYC2008 catalogue [32] (accessed 2012) as our
set of reference yeast complexes, consisting of 408 complexes. We
evaluate the methods only for prediction of large complexes (con-
sisting of at least four proteins), of which there are 149 in CYC2008.
This is because practically all methods find it difficult to detect
small complexes (consisting of fewer than four proteins) and hence
explicitly exclude these complexes from their predictions (e.g. see
[55]). Besides, the possibility of a predicted complex matching a
reference complex that is small purely by chance is relatively high
[61], and therefore evaluating the methods becomes challenging
(further discussed in Section 2.4.3).

Fig. 1 shows the performance of nine methods using precision,
recall, F-measure and AUC. We see that methods incorporating bio-
logical information achieve higher recall and also generate ranked
predictions with higher AUC compared to those based solely on
network clustering. Methods that leverage reliability weights
(MCL, CMC, ClusterONE, HACO and MCL-CAw) achieve higher recall
than those that ignore these weights (MCODE). These results agree
with evaluations from earlier studies [13,14]. Finally, ensemble
clustering attains the highest recall while maintaining high AUC.
The best-performing methods on an average predict about 75% of
the complexes.

Fig. 2 shows the neighbourhood subnetworks around two
example complexes predicted by some of the complex discovery
methods. Fig. 2a shows the CBF3 complex, which consists of four
proteins; these proteins are connected to a number of external pro-
teins outside the complex making it difficult for some methods to
recover this complex with high accuracy. CMC and COACH both
recover the complex accurately, whereas RNSC recovers only three
proteins and ClusterONE includes one extra (noisy) protein into the
prediction. Fig. 2b shows the mRNA cleavage factor complex con-
sisting of five proteins. Again, these proteins are connected to
many external proteins; furthermore, one of the complex proteins,
Hrp1p, is not directly connected to the rest of the complex. As a
result, none of the methods predict the entire complex accurately:
CMC and COACH both predict four of the five proteins, RNSC pre-
dicts three and MCL predicts two along with an external protein.

2.4. Open challenges in complex detection

The above examples highlight some of the major challenges in
complex discovery: many complexes either do not form dense sub-
networks or are too small to be recovered accurately.

2.4.1. Detection of sparse complexes
Existing methods rely on the assumption that complexes are

embedded as dense subnetworks within the PPI network and
hence adopt density-based clustering for identifying complexes.
In an analysis of complexes identifiable from a yeast PPI network,
it was noted that only about 65% of complexes with at least four
proteins in the network could be identified with Jaccard similar-
ity P 0.50 [66]. The remaining 35% missed complexes did not meet
the denseness criteria due to lack of sufficient interactions
between member proteins. Even in the well-studied organism
yeast, about 30% of the interactome still remains to be mapped
of an estimated 25000–35000 interactions [67], thus posing a sev-
ere challenge to methods that are based on dense subnetworks to
identify complexes. To overcome this limitation, [66] proposed to
add functional interactions including association between proteins
based on functional similarity to enhance the density of complexed
regions within PPI networks, and thereby aid existing methods in
identifying sparse complexes. Doing so enhanced the performance
of MCL, MCL-CAw, CMC and HACO by up to 47% on average across a
number of yeast PPI networks.

Supervised Weighting for Composite Networks (SWC) [53] inte-
grates even more data sources including functional association
data derived from multiple evidence such as co-occurrence in the
literature, to build a composite protein network which fills in the
missing interactions within sparse complexes. To reduce the noise
introduced into the network, SWC weights the edges using a super-
vised-learning approach. This improved the performance of most
clustering algorithms in yeast and human complex prediction, with
sparse complexes benefitting the most.

2.4.2. Discerning overlapping complexes
Many proteins participate in multiple distinct complexes,

resulting in complexes that overlap in the PPI network. These over-
lapping complexes are frequently highly inter-connected to each
other, making it difficult for clustering algorithms to correctly deci-
pher their boundaries [26]; approximately 40% of yeast complexes
overlap with at least one other complex.



Fig. 2. Examples of complexes predicted by different methods. Blue nodes are proteins within the complex and red nodes are proteins not in the complex. (a) CBF3 complex,
consisting of four proteins, compared with that predicted by CMC and COACH (blue), RNSC (red), ClusterONE (green). (b) mRNA cleavage factor complex, consisting of five
proteins, compared with that predicted by CMC and COACH (blue), RNSC (green), MCL (red).
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Some proteins use the same binding surface to interact with
multiple partners so that these interactions do not occur simulta-
neously. Such mutually exclusive interactions can be used to dis-
count simultaneously occurring interactions, which can help to
deconvolute overlapping complexes and produce finer clusters in
general. For example, Jung et al. [68] used structural data of protein
binding interfaces to construct a simultaneous PPI network (SPIN)
containing only cooperative interactions and exclude mutually
exclusive interactions. MCODE and LCMA displayed considerable
improvement on SPIN relative to the original PPI network. Ozawa
et al. [69] used domain–domain interactions (DDIs) to identify con-
flicting pairs of protein interactions and used these to refine the
clusters from MCODE and MCL. The accuracies of these methods
improved by at least twofold. Similarly, Will and Helms [70] inte-
grated PPI networks and DDIs, taking into account the connectivity
constraints due to sharing of domains, to identify transcription-
factor (TF) complexes in yeast.

Liu et al. [71] reasoned that proteins with many neighbours in
the PPI network are unlikely to interact with all of them simultane-
ously. Such proteins, or hubs, were thus removed before clustering,
and added back to the generated clusters to which these were
highly connected. Furthermore, since a set of interactions can
occur simultaneously only if all interacting partners are in the
same cellular compartment, the PPI network was decomposed into
spatially coherent subnetworks before clustering. This technique
improved the performance of MCL, RNSC, IPCA, and CMC, in part
because overlapping complexes could be more easily separated
and extracted.

Tatsuke and Maruyama [72] observed that the sizes of protein
complexes tend to follow a characteristic power-law distribution
wherein the majority of complexes are small whereas the larger
complexes occur less frequently. This insight was used to randomly
partition the PPI network into complexes (clusters) of
different sizes using Markov chain Monte-Carlo sampling [73].
Interestingly, this sampling-based approach (PPSampler) could
recover several known complexes from CYC2008. The most recent
version Repeated Simulated Annealing of Partitions of Proteins
(ReSAPP) [74] uses simulated annealing method to optimise the
sampling by returning the partition with the highest probability.
ReSAPP combines clusters from multiple sampling runs and
thereby can also identify overlapping complexes.

2.4.3. Detection of small complexes
Small complexes (consisting of fewer than four proteins) com-

prise the majority of complexes in yeast and human, but their
prediction is especially susceptible to inaccuracies in the PPI net-
work: missing interactions could easily disconnect a small complex
whereas spurious interactions could embed the complex within a
larger subnetwork. Topological measures such as interaction den-
sity applicable to large complexes are less effective for detecting
small complexes – e.g. from a network with n proteins there are
O(n3) triplets (with density 1) that could be predicted as three-pro-
tein complexes. Furthermore, evaluation measures such as Jaccard
match become less effective for evaluating small complexes – e.g. a
mismatch of only one protein in a three-protein complex renders
the prediction inaccurate or less useful despite achieving a
Jaccard of 0.50. As a result, most methods fare poorly in detecting
small complexes (evaluated in [26,75]) or explicitly exclude small
complexes from their predictions (e.g. see [55]). Detection of small
complexes therefore requires specialised methods.

Yong et al. [75] propose one such specialised method called
size-specific supervised weighting (SSS). SSS integrates functional
associations and literature co-occurrences with PPI data, along
with various topological characteristics, using a supervised
approach to weight each interaction with its probability of belong-
ing to a small complex. Small complexes are extracted and scored
with their cohesiveness-weighted density, which incorporates
interactions both within and surrounding each complex. SSS
attains better performance in small-complex prediction compared
to traditional clustering approaches, deriving about 50% more
small complexes at equivalent precision levels.

Ruan et al. proposed two methods for predicting size-two and
size-three complexes separately [76,77]. Both methods use
weights of the interactions around putative small complexes as
well as the number of domains in the constituent proteins to
derive features for a kernel-based supervised approach. These
methods outperform traditional clustering approaches in predict-
ing heterodimeric and heterotrimeric complexes.

Protein sub-complexes can be considered as an interesting spe-
cial case of overlapping and/or small complexes in which a subset
of proteins from a larger complex forms a smaller but by itself a
distinct complex. This can be related to cores in which the set of
core proteins interact with different sets of attachments to form
distinct complexes [6]. Since these sub-complexes overlap with
multiple complexes, most general clustering methods either merge
all complexes to produce less discernable large clusters. TAP data
(e.g. [6,7]) is valuable here because bait-prey pairs from sub-com-
plexes tend to appear multiple times as part of (larger) complexes.
Zaki and Nora [78] found that CACHET [58], which is specialised to
TAP data, was highly effective in identifying these sub-complexes.
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Based on this idea, these authors developed TRIBAL (TRIad-Based
Algorithm) which preserves the multi-edge nature of these bait-
prey interactions in TAP data to identify sub-complexes.

2.5. Detecting evolutionarily conserved complexes

With rapid increase in the number of resources for human PPIs
over the last several years [27–30], applying complex prediction
methods to identify human complexes has become feasible, and
recently a number of studies have attempted to reconstruct com-
plexes from different human tissues and across diseases states
(Section 4). Among the interesting observations is that many
human complexes are ancient and slowly evolving, with roughly
a quarter of the human complexes overlapping with those from
lower-order organisms [15]. This has inspired several studies to
look at the evolutionary conservation of complexes between
human and lower-order organisms. While some of these studies
have mainly looked into the evolutionary convergence or diver-
gence of complexes, others have employed these insights to further
enhance complex prediction.

Among the seminal works in this direction were by Kelley et al.
[79] and Sharan et al. [80] who constructed orthology networks
using conserved interactions between species (initially between
S. cerevisiae and the bacteria Helicobacter pylori and later extended
to human) based on protein-sequence homology, and clustered
these networks to identify conserved complexes between these
species. The complexes so-identified were involved in protein
translation, DNA-damage response (DDR) and nuclear transport,
suggesting that complexes from core cellular processes tend to
be evolutionarily conserved.

van Dam and Snel [81] studied rewiring of protein complexes
between yeast and human by mapping PPI networks onto bona fide
complexes, and concluded that a majority of co-complexed protein
pairs retained their interactions from yeast to human, thereby indi-
cating that evolutionary changes in complexes were not due to
extensive rewiring of complexed PPIs but instead due to gain or
loss of protein subunits from yeast to human. Hirsh and Sharan
[82] devised a probabilistic model of protein evolution and
employed it to identify conserved complexes between species.
Similar to observations by [79,80], these authors found that com-
plexes involved in core cellular processes including pre-mRNA pro-
cessing, replication, cytoskeleton maintenance and proteasome
were highly conserved.

In an interesting work integrating 3D-protein structural infor-
mation with PPI networks, Marsh et al. [83] characterised the evo-
lutionary conservation of ‘pathways of assembly’ for complexes.
The authors observed that evolutionary events optimised complex
assembly by simplifying the topologies of complexes, and thereby
demonstrated an evolutionary conservation of the assembly order.
In particular, gene fusion events reduced the number of assembly
steps by at least one, thereby generating fewer intermolecular
interfaces in the resultant complex. These events also optimised
network topologies by reducing the number of discrete protein
interactions, leading to conservation of complexed regions within
networks [84].

Nguyen et al. [36] integrated protein domain information with
PPI networks to construct domain-interolog networks and studied
conservation of complexes between yeast and human. These
authors noted that although several proteins are conserved by
sequence similarity between yeast and human (e.g. RAD9 and
hRAD9), there are many others that did not show any sequence
conservation (e.g. BRCA1 in human) and yet performed core func-
tions (e.g. cell cycle and DDR) that were conserved. These proteins
in fact retained conserved functional domains – for example, the
BRCT domain present in yeast RAD9 and human hRAD9 is also
present in the non-conserved human BRCA1 and 53BP1; all these
proteins play vital roles in DDR [85]. Therefore, considering func-
tional conservation by integrating domain similarity rather than
mere sequence similarity is important to understand conservation
patterns of complexes. Based on domain conservation, the authors
found that several human complexes had in fact reorganised via
creation of ‘‘mosaic’’ proteins that accumulated conserved domains
from multiple yeast proteins.

Methods that detect coevolution of interacting proteins could
also be used to detect complexes – e.g. using insights from studies
such as [86] on the coevolution of entire protein sequences and
specific interaction sites in the context of protein interactions (also
see reviews [87,88]). Sets of interacting proteins that coevolve
either tend to conserve their interacting domains or adapt to com-
pensatory changes in binding surfaces of partners, thus suggesting
evolutionary pressure possibly to conserve specific functions.
Therefore, some of these groups of coevolving proteins could
potentially constitute conserved complexes.

3. Integrating contextual information with PPI networks for
predicting dynamic protein complexes

Many, if not all, protein complexes are dynamic entities, which
assemble at a specific sub-cellular space and time to perform a
specific function and disassemble after that. For example, cyclin-
CDK complexes involving cyclin-dependent kinases (CDKs) are acti-
vated based on the concentration levels of cyclins in a cell-cycle
dependent manner [89]. However, due to the lack of specific con-
textual (temporal and spatial) information in currently available
PPI datasets, it is challenging to decipher the dynamics of com-
plexes solely from PPI networks [71]. This limitation severely
impacts the performance of computational methods and more crit-
ically our understanding of complex organisation and function [90].

3.1. Identifying temporal complexes

Several methods have looked into novel ways of integrating con-
textual information with PPI networks to understand the dynamics
of complexes. One of the earliest attempts was by Han et al. [91]
who integrated expression levels of genes with yeast PPI network
to study hub proteins. Han et al. noted two distinct kinds of hubs
that are transiently expressed and interact with other proteins to
form dynamic modules – date hubs, which interact only with single-
ton or a small set of proteins at any given time, and party hubs
which simultaneously interact with several proteins. Although ini-
tially contested [92] this finding is now widely accepted [93,94],
with Komurov and White [95] further extending the concept to
include family hubs that constitutively express and interact with
other (constitutively expressed) proteins to form static modules.

By integrating PPI networks with the expression levels of cell-
cycle proteins, de Lichtenberg et al. [96] studied the dynamics of
complex assembly and disassembly during the yeast cell cycle.
Eukaryotic complexes are composed of both constitutively
expressed as well as dynamically expressed proteins, which enable
them to assemble ‘‘just-in-time’’ to perform functions. Most sub-
units of complexes are pre-synthesized and pre-assembled
whereas the remaining subunits are synthesized only when
required, thereby tightly regulating the final complex assembly:
by holding off on the last components, cells prevent accidental
‘switching on’ of complexes at wrong times.

Similarly, by integrating protein expression levels from the
yeast cell cycle with cores and attachments within complexes,
[97] found that attachments are enriched significantly higher for
dynamically expressed proteins compared to cores, whereas the
cores are enriched for constitutively expressed proteins. This pat-
tern reflects the ‘‘reusability’’ of cores during complex formation:
cores being reused across multiple complexes are maintained
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constitutively throughout the cell cycle, whereas attachments
being required just-in-time are expressed dynamically when
required during complex assembly.

Li et al. [98] identified temporal complexes by clustering PPI
networks constructed using gene expression data from different
experimental time points. Using yeast datasets, Li et al. found that
about 60% of complexes existed only at one time point (i.e. more
dynamic) whereas about 24% of complexes existed in more than
three time points (i.e. more constitutive). By segregating the PPI
network based on time-based profiles, dynamic sub-complexes
could be separated from larger static clusters, thereby improving
overall complex prediction. Similarly, [99] proposed a method
Time Smooth Overlapping Complex Detection (TS-OCD) for joint
analysis of PPI networks and time-series gene expression profiles
to detect dynamic complexes at each time point. Analysis using
yeast datasets showed that significantly many complexes could
be detected compared to static methods, and in particular their
method could identify complexes that share proteins dynamically
to perform time-dependent functions.

Goh et al. [100] found that miRNAs with widely different
expression profiles (i.e., anti-coexpressed) strongly target hub-
spokes in PPI networks but yet avoid targeting the same set of
hub-spokes. This suggests that anti-coexpressed miRNAs play an
important role in controlling the formation of protein complexes
that are mutually exclusive. It is tantalizing to speculate on the
possibility of inferring mutual exclusivity proteins which are tar-
gets of anti-coexpressed miRNAs, and exploiting this information
via a SPIN-like approach [68] in protein complex prediction.

3.2. Integrating structural information with PPI networks

Incorporating information from three-dimensional (3D) struc-
tures of interacting proteins can further aid in the identification
of protein complexes. Structural information on interacting pro-
teins has been previously used to identify the nature of the inter-
actions [101]. Proteins using the same interaction interface to
bind different partner proteins primarily participate in multiple
transient interactions as in the case of several kinases. On the other
hand, some proteins use multiple interfaces to bind distinct part-
ners and are often seen as members of obligate complexes [101].
With increasing availability of protein structures, it is now possible
to annotate PPI networks with known 3D structures or reasonably
accurate homology models [102]. Docking is often used to predict
an ensemble of possible macromolecular assemblies of proteins
usually through the prediction of complementary binding surfaces
on partner proteins [103]. Docking can also be used to identify
interacting protein pairs through complete cross-docking, where
each protein within a set is docked with all other proteins to iden-
tify its potential interaction partners [104–106]. Using the infor-
mation of known interaction interfaces, or predicted binding sites
obtained through evolutionary sequence analysis, can improve
the accuracy of interaction partner prediction through cross-dock-
ing. The prediction of binding affinities of interacting proteins is of
great interest not only for assessing the interactions obtained from
high-throughput experiments for their reliability, but also for pre-
dicting novel interactions between proteins. However, it is difficult
to predict binding affinities using docking scores obtained from
current scoring algorithms [107]. Docking is further complicated
by the conformational changes that proteins undergo as a result
of binding to their cognate partners. These conformational changes
include backbone flexibility and movements of amino acid side-
chains, both of which can be addressed by flexible protein–protein
docking methods [108]. Several algorithms and automated tools
have been developed for this purpose [109–111]. However, flexible
docking is much more difficult than rigid docking and docking pro-
tein pairs with large conformational changes is still a challenge.
3.2.1. Flexibility and intrinsic disorder in protein complexes
The conformational changes that take place in proteins upon

binding correspond to their flexibility in the unbound state [112].
Flexibility is important for the formation of large complexes
[113] as well as those containing a greater diversity of subunits
[114]. Flexibility allows binding over larger distances and in the
form of larger binding interfaces without the loss of entropy
[115]. Such flexible proteins participate in dynamic complexes
and often contain large regions of intrinsic disorder. Intrinsic
disorder is an extreme form of flexibility in protein structure.

Intrinsically disordered regions in proteins lack stable 3D struc-
ture under physiological conditions and can take on an ensemble of
conformations (reviewed in [116] and more recently [117]). The
high flexibility of disordered regions allows them to reversibly
bind to several partner proteins [118]. Indeed, the presence of
intrinsic disorder has long been associated with the ability of pro-
teins to bind to multiple partner proteins [119,120] allowing them
to play an important role in cell signalling and many other aspects
of cellular function [117].

3.2.2. Fuzzy complexes
There is increasing recognition for the importance of intrinsic

disorder in protein complexes [113], also known as fuzzy com-
plexes [121]. Some complexes show static fuzziness where the dis-
ordered region in a protein folds into an ordered conformation on
binding by undergoing coupled folding upon binding. An example
of this is the induced folding of the disordered pKID (phosphory-
lated kinase-inducible activation domain) of the transcription fac-
tor CREB (cAMP-responsive element-binding protein) binding the
KIX domain of CBP (CREB-binding protein) to induce transcription
of downstream genes [122] (Fig. 3a). Similar folding also takes
place in the N-terminal disordered region of p53 on binding the
E3 ubiquitin ligase MDM2 [120]. Binding of the disordered region
may also take place through the selection of a preformed con-
former. For example, the KID (kinase inhibitory domain) of
p27Kip1, a cyclin-dependent inhibitor, has some preformed helical
structure that is used to bind cyclin A and subsequently CDK2 to
control cell cycle [123] (Fig. 3b). While this was previously pro-
posed as an instance of the induced-fit mechanism of binding
[124], the role of the preformed helical structure of p27 in effective
binding has been recently identified [125].

Proteins with disordered regions also form dynamic fuzzy com-
plexes where the disordered region stays disordered either par-
tially or completely on binding [126]. Thus, the disordered
regions may remain flexible during binding without folding into
a fixed structure as in the case of the inhibitor I-2 when it binds
PP1 (protein phosphatase 1) [127] (Fig. 3c). Disordered linkers
between two ordered domains within a protein also form parts
of dynamic fuzzy complexes. They are advantageous because they
allow the two domains to sample a large number of orientations
with respect to each other, as observed in the calcium-binding
domains of calmodulin which adopt different relative orientations
when binding to different proteins [128–130].

It has been proposed that in some dynamic complexes, the dis-
ordered partner does not bind the ordered partner in a single loca-
tion but rapidly changes between several conformers binding with
the help of a mean electrostatic field rather than through discrete
charges [128]. This binding is further affected by post-translational
modifications which can change the mean charge presented by the
disordered binding interface [128].

3.2.3. Binding interface and complex prediction
Intrinsically disordered regions in proteins frequently bind their

interaction partners through the use of short linear motifs [129]
which adopt different structures when binding different target
proteins. On the other hand, proteins may also use molecular
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Fig. 3. Flexibility and intrinsic disorder in protein complexes. (a) Induced folding of
the intrinsically disordered pKID domain of CREB (orange) on binding to the KIX
domain of CBP (blue) (PDB id: 1KDX). (b) Binding of the intrinsically disordered KID
domain (orange) of p27Kip1 to the Cyclin A (grey) and Cdk2 (blue) (PDB id: 1JSU). (c)
I-2 (orange) stays disordered when binding to PP1 (blue). Disordered regions are
indicated by dotted lines and not visible in the X-ray crystal structure (PDB id:
2O8G).

2598 S. Srihari et al. / FEBS Letters 589 (2015) 2590–2602
recognition features (MoRFs) for binding their cognate partners
[130]. MoRFs are short linear regions within disordered segments
that participate in specific target recognition and undergo a disor-
der-to-order transition on binding. Given the flexibility of the bind-
ing partners in such complexes, it is difficult to predict their
binding sites or protein assemblies. However, several tools have
become available in recent years to predict the binding interfaces
within the disordered regions. One such tool, SLiMPrints, predicts
short linear motifs based on conserved regions that may partici-
pate in binding [131]. Other methods use machine learning tech-
niques to identify binding interfaces using a host of features
from the sequence of the disordered region including the amino
acid propensity of known MoRFs and their flanking regions, physic-
ochemical properties of the amino acids as well as evolutionary
profiles [132–135]. It is now possible to use information from
experimental techniques like Nuclear Magnetic Resonance (NMR)
and Small Angle X-ray Scattering (SAXS) in combination with com-
putational methods to model the ensemble of conformations that
may be adopted by disordered regions within protein complexes
[114,115]. The Protein Ensemble Database is a collection of such
structural ensembles of proteins obtained from a combination of
experimental and computational methods [136].

4. Identifying complexes in human diseases

Complexes are responsible for driving important mechanisms
that maintain cellular homeostasis, but are also often the sites of
dysregulation in diseases. The functional analysis of genes within
complexes suggests that these complexes could be hotspots for
perturbations due to genetic or environmental factors, thereby
driving common and rare diseases [137,138]. Identifying com-
plexes dysregulated in human diseases therefore forms an impor-
tant extension of complex detection methods.

Vanunu et al. [139] employed a PPI network to associate com-
plexes with diseases catalogued in the Online Mendelian
Inheritance in Man (OMIM) database [140]. Using disease-to-gene
associations from the OMIM database as a prior, the proposed
method measures the association computed via network-propaga-
tion between causal genes and genetic diseases. The score com-
puted for each gene is then used in combination with the PPI
network to identify complexes involved in the disease. About 566
complexes were identified that were associated with hereditary
or congenital diseases including ataxia-telangiectasia (AT), heredi-
tary prostate cancer and microcephalic osteodysplastic primordial
dwarfism (MOPD).

Similarly, Lage et al. [141] identified about 506 complexes that
included disease-promoting genes implicated in disorders such as
retinitis pigmentosa, epithelial ovarian cancer, inflammatory
bowel disease, amyotrophic lateral sclerosis, Alzheimer disease,
type-2 diabetes and coronary heart disease. To do this, the authors
constructed a phenome-interactome network to identify candidate
complexes, which were scored based on member proteins involved
in these disorders, thus prioritising disease-associated complexes
from the network.

In diseases such as cancer, cellular dysregulation often involves
complexes that regulate critical functions including genome-sta-
bility maintenance, cell-cycle checkpointing and control, growth
signalling and metabolism, the disruptions of which lead to
increased accumulation of genomic instability, cell proliferation
and metabolic dysfunction. For example, dysregulation of the
BRCA1-A, -B and -C complexes due to loss-of-function mutations
or epigenetic silencing of the BRCA1 gene results in decreased
DNA double-strand break repair efficiency, thus contributing to
genomic instability in breast cancer [142,143].

Recently, a number of works have attempted to identify com-
plexes dysregulated in cancer by studying rewiring of complexes
between cancer conditions. For example, Srihari et al. [39,144] con-
structed condition-specific PPI networks by integrating gene-ex-
pression profiles with human PPI network across normal and
cancer conditions in breast and pancreatic cancers. Subsequently,
complexes were identified using CMC [45] from each of these con-
dition-specific networks separately and matched to detect rewir-
ing or changes to protein composition within complexes between
these conditions. Interestingly, several known cancer genes were
involved in these rewiring events, and the affected complexes dis-
played significant differences in expression levels between these
cancer conditions. Among the dysfunctional complexes were those
involved in DNA-damage repair (e.g. BRCA1 complexes) and
growth-factor signalling (e.g. EGFR signalling) and also protea-
somes, signalosomes and ribosomal complexes.

Zhao et al. [145] estimated the differential abundance of protein
complexes between normal and cancer conditions in the cancers of
39 human tissues by using gene expression profiles. The authors
employed known human complexes from the CORUM database
[33], and estimated complex abundance by computing the optimal
number of proteins required to form each complex and the number
of copies of proteins present in the cell. Complexes involved in
DNA-damage repair (e.g. BLM-TOP3A), histone modification (e.g.
HDAC complexes), minichromosome maintenance (e.g. MCM com-
plexes) and protein translation (e.g. RNA polymerases) showed
abnormal expression in several human cancers.

Chen et al. [146] modelled disease-complex prioritisation in a
network as an optimisation problem by maximising the informa-
tion flow between a query disease and a candidate complex
through the network. For a queried disease, this approach
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identified the associated proteins and the complexes formed by
these proteins in the network. Application of this approach to
breast cancer yielded six complexes involved in DNA-damage
repair (BRCA1 and MSH complexes), replication factor (RFC com-
plexes) and chromatin remodelling (SWI/SNF complex).

Goh et al. [147,148] demonstrated that analysing proteomic
profiles in the context of protein complexes significantly improved
the reproducibility and sensibility of biomarker identification from
proteomic data. They introduced the concept of proteomic signa-
ture profile (PSP), which is a vector of protein complexes and their
‘‘hit rates’’ (i.e., the proportion of protein components detected in a
patient sample for the respective complexes) irrespective of indi-
vidual protein’s quantitation level. Complexes that were signifi-
cantly differential in their hit rates between cases and controls
were reported. They uncovered in liver cancer, an interesting rela-
tionship between the purine metabolism pathway and two other
complexes involved in DNA-damage repair, suggesting progression
to poor-stage liver cancer requires additional mutations that dis-
rupt DNA-damage repair enzymes.

5. Conclusion

With increasing availability of PPI and other functional datasets,
prediction of complexes has come a long way over the last several
years. Apart from widely studied model organisms such as yeast
[1–7], fruit fly [8,9] and worm [10], it is now possible to predict
complexes from more sophisticated organisms including human
[15]. This has provided new opportunities to study complexes
under different contexts and across species, thus tracing the func-
tional and evolutionary conservation of complexes. Integrating
diverse information including 3D structure and time or context-
based gene-expression profiles has helped to map the dynamics
of complex formation and also understand their roles in diseases.
This forms an excellent example where a fundamental problem
such as complex prediction has had far-reaching applications in
understanding the organisation and functions of the cell. We hope
that this review aptly commemorates these efforts and inspires
further advancement of research in this exciting area.

Acknowledgement

We thank Dr. Alison Anderson (The University of Queensland)
for critical reading of the manuscript. S.S. is supported by an
Australian National Health and Medical Research Council
(NHMRC) Grant# 1028742.

References

[1] Uetz, P., Giot, L., Cagney, G., Traci, A., Judson, R., Knight, S.R., Lokshon, D.,
Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B.,
Conover, D., Kalbeish, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S.
and Rothberg, J.M. (2000) A comprehensive analysis of protein–protein
interactions in Saccharomyces cerevisiae. Nature 403 (6770), 623–627.

[2] Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M. and Sakaki, Y. (2001) A
comprehensive two-hybrid analysis to explore the yeast protein interactome.
Proc. Natl. Acad. Sci. 98 (8), 4569–4574.

[3] Ho, Y., Gruhler, A., Heilbut, A., Bader, G., Moore, L., Adams, S.L., Millar, A.,
Taylor, P., Bennett, K., Boutilier, K., Yang, L., Wolting, C., Donaldson, I.,
Schandorff, S., Shewnarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat, B.,
Alfarano, C., Dewar, D., Lin, Z., Michalickova, K., Willems, A.R., Sassi, H.,
Nielsen, P.A., Rasmussen, K.J., Andersen, J.R., Johansen, L.E., Hansen, L.H.,
Jespersen, H., Podtelejnikov, A., Nielsen, E., Crawford, J., Poulsen, V., Sorensen,
B.D., Matthiesen, J., Hendrickson, R.C., Gleeson, F., Pawson, T., Moran, M.F.,
Durocher, D., Mann, M., Hogue, C.W., Figeys, D. and Tyers, M. (2002)
Systematic identification of protein complexes in Saccharomyces cerevisiae
by mass spectrometry. Nature 415 (6868), 180–183.

[4] Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz,
J., Rick, J.M., Michon, A.-M., Cruciat, C.-M., Remor, C., Hofert, C., Schelder, M.,
Brajenovic, M., Ruffner, M., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi,
T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.-A.,
Copley, R.-R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M.,
Bouwmeester, G., Bork, P., Seraphin, B., Kuster, B., Neubauer, G. and Superti-
Furga, G. (2002) Functional organization of the yeast proteome by systematic
analysis of protein complexes. Nature 415 (6868), 141–147.

[5] Michinck, S.W. (2003) Protein fragment complementation strategies for
biochemical network mapping. Curr. Opin. Biotechnol. 14 (6), 610–617.

[6] Gavin, A.C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C.,
Jensen, L.J., Bastuck, S., Dumpelfeld, B., Edelmann, A., Heurtier, M.A., Hoffman,
V., Hoefert, C., Klein, K., Hudak, M., Michon, A.M., Schelder, M., Schirle, M.,
Remor, M., Rudi, T., Hooper, S., Bauer, A., Bouwmeester, T., Casari, G., Drewes,
G., Neubauer, G., Rick, J.M., Kuster, B., Bork, P., Russell, R.B. and Superti-Furga,
G. (2006) Proteome survey reveals modularity of the yeast cell machinery.
Nature 440 (7084), 631–636.

[7] Krogan, N.J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li, J., Pu, S.,
Datta, N., Tikuisis, A.P., Punna, T., Peregrin-Alvarez, J.M., Shales, M., Zhang, X.,
Davey, M., Robinson, M.D., Paccanaro, A., Bray, J.E., Sheung, A., Beattie, B.,
Richards, D.P., Canadien, V., Lalev, A., Mena, F., Wong, P., Starostine, A., Canete,
M.M., Vlasblom, J., Wu, S., Orsi, C., Collins, S.R., Chandran, S., Haw, R., Rilstone,
J.J., Gandi, K., Thompson, N.J., Musso, G., Onge, P., Ghanny, S., Lam, M.H.,
Butland, G., Altaf-Ul, A.M., Kanaya, S., Shilatifard, A., O’Shea, E., Weissman, J.S.,
Ingles, C.J., Hughes, T.R., Parkinson, J., Gerstein, M., Wodak, S.J., Emili, A. and
Greenblatt, J.F. (2006) Global landscape of protein complexes in the yeast
Saccharomyces cerevisiae. Nature 440 (7084), 637–643.

[8] Giot, L., Bader, J.S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y.L., Ooi,
C.E., Godwin, B., Vitols, E., Vijayadamodar, G., Pochart, P., Machineni, H.,
Welsh, M., Kong, Y., Zerhusen, B., Malcolm, R., Varrone, Z., Collis, A., Minto, M.,
Burgess, S., McDaniel, L., Stimpson, E., Spriggs, F., Williams, J., Neurath, K.,
Ioime, N., Agee, M., Voss, E., Furtak, K., Renzulli, R., Aanensen, N., Carrolla, S.,
Bickelhaupt, E., Lazovatsky, Y., DaSilva, A., Zhong, J., Stanyon, C.A., Finley Jr.,
R.L., White, K.P., Braverman, M., Jarvie, T., Gold, S., Leach, M., Knight, J.,
Shimkets, R.A., McKenna, M.P., Chant, J. and Rothberg, J.M. (2003)
A protein interaction map of Drosophila melanogaster. Science 302 (5651),
1727–1736.

[9] Guruharsha, K.G., Rual, J.F., Zhai, B., Mintseris, J., Vaidya, P., Vaidya, N.,
Beekman, C., Wong, C., Rhee, D.Y., Cenaj, O., McKillip, E., Shah, S., Stapleton,
M., Wan, K.H., Yu, C., Parsa, B., Carlson, J.W., Chen, X., Kapadia, B.,
VijayRaghavan, K., Gygi, S.P., Celniker, S.E., Obar, R.A. and Artavanis-
Tsakonas, S. (2011) A protein complex network of Drosophila melanogaster.
Cell 147 (3), 690–703.

[10] Li, S., Armstrong, C.M., Bertin, N., Ge, H., Milstein, S., Boxem, M., Vidalain, P.O.,
Han, J.D., Chesneau, A., Hao, T., Goldberg, D.S., Li, N., Martinez, M., Rual, J.F.,
Lamesch, P., Xu, L., Tewari, M., Wong, S.L., Zhang, L.V., Berriz, G.F., Jacotot, L.,
Vaglio, P., Reboul, J., Hirozane-Kishikawa, T., Li, Q., Gabel, H.W., Elewa, A.,
Baumgartner, B., Rose, D.J., Yu, H., Bosak, S., Sequerra, R., Fraser, A., Mango,
S.E., Saxton, W.M., Strome, S., Den, Van., Heuvel, S., Piano, F., Vandenhaute, J.,
Sardet, C., Gerstein, M., Doucette-Stamm, L., Gunsalus, K.C., Harper, J.W.,
Cusick, M.E., Roth, F.P., Hill, D.E. and Vidal, M. (2004) A map of the
interactome network of the metazoan C. elegans. Science 303 (5657), 540–
543.

[11] Spirin, V. and Mirny, L. (2003) Protein complexes and functional modules in
molecular networks. Proc. Natl. Acad. Sci. 100 (21), 12123–12128.

[12] Bader, G.D. and Hogue, C.W.V. (2003) An automated method for finding
molecular complexes in large protein interaction networks. BMC
Bioinformatics 4, 2.

[13] Li, X.L., Wu, M., Kwoh, C.C. and Ng, S.K. (2010) Computational approaches for
detecting protein complexes from protein interaction networks: a survey.
BMC Genomics 11 (Suppl. 1), S3.

[14] Srihari, S. and Leong, H.W. (2013) A survey of computational methods for
protein complex prediction from protein interaction networks. J. Comput.
Biol. Bioinf. 11 (2), 1230002.

[15] Havugimana, P.C., Hart, G.T., Nepusz, T., Yang, H., Turinsky, A.L., Li, Z., Wang,
P.I., Boutz, D.R., Fong, V., Phanse, S., Babu, M., Craig, S.A., Hu, P., Wan, C.,
Vlasblom, J., Dar, V.U., Bezginov, A., Clark, G.W., Wu, G.C., Wodak, S.J., Tillier,
E.R., Paccanaro, A., Marcotte, E.M. and Emili, A. (2012) A census of human
soluble protein complexes. Cell 150 (5), 1068–1081.

[16] Hartwell, L.H., Hopfield, J.J., Leiber, S. and Murray, A.W. (1999) From
molecular to modular cell biology. Nature 402 (Suppl. 6761), C47–C52.

[17] Zhang, B., Park, B.H., Karpinets, T. and Samatova, N. (2008) From pull-down
data to protein interaction networks and complexes with biological
relevance. Bioinformatics 24 (7), 979–986.

[18] Bader, G.D. and Hogue, C.W.V. (2002) Analysing yeast protein–protein
interaction data obtained from different sources. Nat. Biotechnol. 20 (10),
991–997.

[19] von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S. and Bork,
P. (2002) Comparative assessment of large-scale datasets of protein–protein
interactions. Nature 417 (6887), 399–403.

[20] Chua, H.N. and Wong, L. (2008) Increasing the reliability of protein
interactomes. Drug Discov. Today 13 (15–16), 652–658.

[21] Cusick, M.E., Yu, H., Smolyar, A., Venkatesan, K., Carvunis, A.-R., Simonis, N.,
Rual, J.-F., Borick, H., Braun, P., Dreze, M., Vandenhaute, J., Galli, M., Yazaki, J.,
Hill, D.E., Ecker, J.R., Roth, F.P. and Vidal, M. (2009) Literature-curated protein
interaction datasets. Nat. Methods 6 (1), 39–46.

[22] Patil, A., Nakai, K. and Nakamura, H. (2011) HitPredict: a database of quality
assessed protein–protein interactions in nine species. Nucleic Acids Res. 39
(Database issue), D744–D749.

[23] Brohee, S. and van Helden, J. (2006) Evaluation of clustering algorithms for
protein–protein interaction networks. BMC Bioinformatics 7, 488.

http://refhub.elsevier.com/S0014-5793(15)00284-7/h0005
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0005
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0005
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0005
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0005
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0010
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0010
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0010
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0015
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0015
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0015
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0015
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0015
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0015
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0015
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0015
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0015
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0015
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0020
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0020
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0020
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0020
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0020
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0020
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0020
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0020
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0025
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0025
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0030
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0030
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0030
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0030
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0030
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0030
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0030
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0035
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0035
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0035
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0035
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0035
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0035
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0035
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0035
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0035
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0035
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0040
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0040
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0040
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0040
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0040
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0040
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0040
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0040
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0040
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0040
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0045
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0045
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0045
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0045
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0045
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0045
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0050
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0050
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0050
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0050
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0050
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0050
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0050
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0050
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0050
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0050
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0055
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0055
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0060
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0060
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0060
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0065
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0065
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0065
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0070
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0070
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0070
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0075
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0075
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0075
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0075
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0075
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0080
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0080
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0085
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0085
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0085
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0090
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0090
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0090
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0095
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0095
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0095
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0100
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0100
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0105
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0105
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0105
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0105
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0110
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0110
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0110
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0115
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0115


2600 S. Srihari et al. / FEBS Letters 589 (2015) 2590–2602
[24] Vlasblom, J. and Wodak, S. (2009) Markov clustering versus affinity
propagation for the partitioning of protein interaction graphs. BMC
Bioinformatics 10, 99.

[25] Collins, S.R., Kemmeren, P., Zhao, X.C., Greenbalt, J.F., Spencer, F., Holstege, F.,
Weissman, J.S. and Krogan, N.J. (2007) Toward a comprehensive atlas of the
physical interactome of Saccharomyces cerevisiae. Mol. Cell. Proteomics 6 (3),
439–450.

[26] Yong, C.H. and Wong, L. (2015) From the static interactome to dynamic
protein complexes: three challenges. J. Bioinfom. Comput. Biol. 13 (2),
1571001.

[27] Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A. and Tyers, M.
(2006) BioGRID: a general repository for interaction datasets. Nucleic Acids
Res. 34 (Database), D535–D539.

[28] Keshava Prasad, T.S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S.,
Mathivanan, S., Telikicherla, D., Raju, R., Shafreen, B., Venugopal, A.,
Balakrishnan, L., Marimuthu, A., Banerjee, S., Somanathan, D.S., Sebastian,
A., Rani, S., Ray, S., Harrys Kishore, C.J., Kanth, S., Ahmed, M., Kashyap, M.K.,
Mohmood, R., Ramachandra, Y.L., Krishna, V., Rahiman, B.A., Mohan, S.,
Ranganathan, P., Ramabadran, S., Chaerkady, R. and Pandey, A. (2009) Human
Protein Reference Database–2009 update. Nucleic Acids Res. 37 (Database),
D767–D772.

[29] Chatr-Aryamontri, A., Breitkreutz, B.J., Heinicke, S., Boucher, L., Winter, A.,
Stark, C., Nixon, J., Ramage, L., Kolas, N., O’Donnell, L., Reguly, T., Breitkreutz,
A., Sellam, A., Chen, D., Chang, C., Rust, J., Livstone, M., Oughtred, R., Dolinski,
K. and Tyers, M. (2013) The BioGRID interaction database: 2013 update.
Nucleic Acids Res. 41 (Database), D816–D823.

[30] Rolland, T., Tasan, M., Charloteaux, B., Pevzner, S.J., Zhong, Q., Sahni, N., Yi, S.,
Lemmens, I., Fontanillo, C., Mosca, R., Kamburov, A., Ghiassian, S.D., Yang, X.,
Ghamsari, L., Balcha, D., Begg, B.E., Braun, P., Brehme, M., Broly, M.P.,
Carvunis, A.R., Convery-Zupan, D., Corominas, R., Coulombe-Huntington, J.,
Dann, E., Dreze, M., Dricot, A., Fan, C., Franzosa, E., Gebreab, F., Gutierrez, B.J.,
Hardy, M.F., Jin, M., Kang, S., Kiros, R., Lin, G.N., Luck, K., MacWilliams, A.,
Menche, J., Murray, R.R., Palagi, A., Poulin, M.M., Rambout, X., Rasla, J.,
Reichert, P., Romero, V., Ruyssinck, E., Sahalie, J.M., Scholz, A., Shah, A.A.,
Sharma, A., Shen, Y., Spirohn, K., Tam, S., Tejeda, A.O., Trigg, S.A., Twizere, J.C.,
Vega, K., Walsh, J., Cusick, M.E., Xia, Y., Barabási, A.L., Iakoucheva, L.M., Aloy,
P., De Las, Rivas J., Tavernier, J., Calderwood, M.A., Hill, D.E., Hao, T., Roth, F.P.
and Vidal, M. (2014) A proteome-scale map of the human interactome
network. Cell 159 (5), 1212–1226.

[31] Mewes, H.W., Amid, C., Arnold, R., Frishman, D., Güldener, U., Mannhaupt, G.,
Münsterkötter, M., Pagel, P., Strack, N., Stümpflen, V., Warfsmann, J. and
Ruepp, A. (2004) MIPS: analysis and annotation of proteins from whole
genomes. Nucleic Acids Res. 32 (Database), D41–D44.

[32] Pu, S., Wong, J., Turner, B., Cho, E. and Wodak, S.J. (2009) Up-to-date
catalogues of yeast protein complexes. Nucleic Acids Res. 37 (3), 825–831.

[33] Ruepp, A., Brauner, B., Dunger-Kaltenbach, I., Frishman, G., Montrone, C.,
Stransky, M., Waegele, B., Schmidt, T., Doudieu, O.N., Stümpflen, V. and
Mewes, H.W. (2008) CORUM: the comprehensive resource of mammalian
protein complexes. Nucleic Acids Res. 36 (Database), D646–D650.

[34] Csermely, P., Korcsmáros, T., Kiss, H.J., London, G. and Nussinov, R. (2013)
Structure and dynamics of molecular networks: a novel paradigm of drug
discovery: a comprehensive review. Pharmacol. Ther. 138 (3), 333–408.

[35] Kuzmanov, U. and Emili, A. (2013) Protein–protein interaction networks:
probing disease mechanisms using model systems. Genome Med. 5 (4), 37.

[36] Nguyen, P.V., Srihari, S. and Leong, H.W. (2013) Identifying conserved protein
complexes between species by constructing interolog networks. BMC
Bioinformatics 14 (Suppl. 16), S8.

[37] Boone, C., Bussey, H. and Andrews, B.J. (2007) Exploring genetic interactions
and networks with yeast. Nat. Rev. Genet. 8 (6), 437–449.

[38] Kaelin Jr., W.G. (2005) The concept of synthetic lethality in the context of
anticancer therapy. Nat. Rev. Cancer 5 (9), 689–698.

[39] Srihari, S. and Ragan, M.A. (2013) Systematic tracking of dysregulated
modules identifies novel genes in cancer. Bionformatics 29 (12), 1553–1561.

[40] Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin,
N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment
for integrated models of biomolecular interaction networks. Genome Res. 13
(11), 2498–2504.

[41] van Dongen S. (2000). Graph clustering by flow simulation (Ph.D. thesis),
University of Utrecht.

[42] Enright, A.J., van Dongen, S. and Ouzounis, C.A. (2002) An efficient algorithm
for large-scale detection of protein families. Nucleic Acids Res. 30 (7), 1575–
1584.

[43] Pu, S., Vlasblom, J., Emili, A., Greenbalt, J. and Wodak, S.J. (2007) Identifying
functional modules in the physical interactome of Saccharomyces cerevisiae.
Proteomics 7 (6), 944–960.

[44] Friedel, C., Krumsiek, J. and Zimmer, R. (2009) Bootstrapping the interactome:
unsupervised identification of protein complexes in yeast. J. Comput. Biol. 16
(8), 971–987.

[45] Liu, G., Wong, L. and Chua, H.N. (2009) Complex discovery from weighted PPI
networks. Bioinformatics 25 (15), 1891–1897.

[46] Adamcsek, B., Palla, G., Farkas, I., Derenyi, I. and Vicsek, T. (2006) CFinder:
locating cliques and overlapping modules in biological networks.
Bioinformatics 22 (8), 1021–1023.

[47] Li, X.L., Tan, S.H., Foo, C.S. and Ng, S.K. (2005) Interaction graph mining for
protein complexes using local clique merging. Genome Inform. 16 (2), 260–
269.
[48] Tomita, E., Tanaka, A. and Takahashi, H. (2006) The worst-case time
complexity for generating all maximal cliques and computational
experiments. J. Theor. Comput. Sci. 363 (1), 28–42.

[49] Nepusz, T., Yu, H. and Paccanaro, A. (2012) Detecting overlapping
protein complexes in protein–protein interaction networks. Nat. Meth. 9,
471–472.

[50] Wang, H., Kakaradov, B., Collins, S.R., Karotki, L., Fiedler, D., Shales, M., Shokat,
K.M., Walter, T., Krogan, N.J. and Koller, D. (2009) A complex-based
reconstruction of the Saccharomyces cerevisiae interactome. Mol. Cell.
Proteomics 8, 1361–1377.

[51] Kaufman, L. and Rousseeuw, P.J. (2009) Finding Groups in Data: An
Introduction to Cluster Analysis, Wiley-Interscience, New York.

[52] Sokal, R.R. and Michener, C.D. (1958) A statistical method for evaluating
systematic relationships. Univ. Kansas Sci. Bull. 38, 2.

[53] Yong, C.H., Liu, G., Chua, H.N. and Wong, L. (2012) Supervised maximum-
likelihood weighting of composite protein networks for complex prediction.
BMC Syst. Biol. 6 (Suppl. 2), S13.

[54] Leung, H., Xiang, Q., Yiu, S.M. and Chin, F.Y. (2009) Predicting protein
complexes from PPI data: a core-attachment approach. J. Comput. Biol. 16 (2),
133–144.

[55] Wu, M., Li, X. and Ng, S.K. (2009) A core-attachment based method to detect
protein complexes in PPI networks. BMC Bioinformatics 10, 169.

[56] Srihari, S., Ning, K. and Leong, H.W. (2009) Refining Markov clustering for
complex detection by incorporating core-attachment structure. Genome
Inform. 23 (1), 159–168.

[57] Srihari, S., Ning, K. and Leong, H.W. (2010) MCL-CAw: a refinement of MCL for
detecting yeast complexes from weighted PPI networks by incorporating
core-attachment structure. BMC Bioinformatics 11, 504.

[58] Wu, M., Li, X., Kwoh, C.K., Ng, S.K. and Wong, L. (2012) Discovery of protein
complexes with core-attachment structures from TAP data. J. Comput. Biol.
19 (9), 1027–1042.

[59] King, A.D., Przulj, N. and Jurisca, I. (2004) Protein complex prediction via cost-
based clustering. Bioinformatics 20 (17), 3013–3020.

[60] Li, X.L., Foo, C.S. and Ng, S.K. (2007) Discovering protein complexes in dense
reliable neighborhoods of protein interaction networks. Proc. Comput. Syst.
Bioinform. Conf. 6, 157–168.

[61] Chua, H.N., Ning, K., Sung, W.K., Leong, H.W. and Wong, L. (2008) Using
indirect protein–protein interactions for protein complex prediction. J.
Bioinform. Comput. Biol. 6 (3), 435–466.

[62] Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, M., Davis,
A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver,
L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin,
G.M. and Sherlock, G. (2000) Gene ontology: a tool for the unification of
biology. Nat. Genet. 25 (1), 25–29.

[63] Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S.,
Orchard, S., Vingron, M., Roechert, B., Roepstorff, P., Valencia, A., Margalit, H.,
Armstrong, J., Bairoch, A., Cesareni, G., Sherman, D. and Apweiler, R. (2004)
IntAct: an open source molecular interaction database. Nucleic Acids Res. 32
(Database), D452–D455.

[64] Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C.,
Duesbury, M., Dumousseau, M., Feuermann, M., Hinz, U., Jandrasits, C.,
Jimenez, R.C., Khadake, J., Mahadevan, U., Masson, P., Pedruzzi, I.,
Pfeiffenberger, E., Porras, P., Raghunath, A., Roechert, B., Orchard, S. and
Hermjakob, H. (2012) The IntAct molecular interaction database in 2012.
Nucleic Acids Res. 40 (Database), D841–D846.

[65] Chatr-aryamontri, A., Ceol, A., Palazzi, L.M., Nardelli, G., Schneider, M.V.,
Castagnoli, L. and Cesareni, G. (2007) MINT: the Molecular INTeraction
database. Nucleic Acids Res. 35 (Database), D572–D574.

[66] Srihari, S. and Leong, H.W. (2012) Employing functional interactions for
characterisation and detection of sparse complexes from yeast PPI networks.
Int. J. Bioinf. Res. Appl. 8 (3), 286–304.

[67] Stumpf, M.P., Thorne, T., de Silva, E., Stewart, R., An, H.J., Lappe, M. and Wiuf,
C. (2008) Estimating the size of the human interactome. Proc. Natl. Acad. Sci.
USA 105 (19), 6959–6964.

[68] Jung, S.H., Hyun, B., Jang, W.H., Hur, H.Y. and Han, D. (2009) Protein complex
prediction based on simultaneous protein interaction network.
Bioinformatics 26 (3), 385–391.

[69] Ozawa, Y., Saito, R., Fujimori, S., Kashima, H., Ishizaka, M., Yanagawa, H.,
Miyamoto-Sato, E. and Tomita, M. (2010) Protein complex prediction via
verifying and reconstructing the topology of domain–domain interactions.
BMC Bioinformatics 11, 350.

[70] Will, T. and Helms, V. (2014) Identifying transcription factor complexes and
their roles. Bioinformatics 30 (17), 415–421.

[71] Liu, G., Yong, C.H., Chua, H.N. and Wong, L. (2011) Decomposing PPI networks
for complex discovery. Proteome Sci. 9 (S1), S15.

[72] Tatsuke, D. and Maruyama, O. (2012) Sampling strategy for protein
complex prediction using cluster size frequency. Gene 518,
152–158.

[73] Brooks, S., Gelmen, A., Jones, G.L. and Meng, X.L. (2011) Handbook of Markov
Chain Monte Carlo, Chapman & Hall/CRC.

[74] Kobiki, S. and Maruyama, O. (2014) ReSAPP: predicting overlapping protein
complexes by merging multiple-sampled partitions of proteins. J. Bioinform.
Comput. Biol. 12 (6), 1442004.

[75] Yong, C.H., Maruyama, O. and Wong, L. (2014) Discovery of small protein
complexes from PPI networks with size-specific supervised weighting. BMC
Syst. Biol. 8 (Suppl. 5), S3.

http://refhub.elsevier.com/S0014-5793(15)00284-7/h0120
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0120
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0120
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0125
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0125
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0125
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0125
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0130
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0130
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0130
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0135
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0135
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0135
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0140
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0140
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0140
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0140
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0140
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0140
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0140
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0140
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0145
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0145
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0145
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0145
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0145
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0150
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0150
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0150
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0150
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0150
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0150
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0150
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0150
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0150
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0150
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0150
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0150
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0150
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0155
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0155
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0155
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0155
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0160
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0160
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0165
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0165
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0165
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0165
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0170
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0170
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0170
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0175
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0175
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0180
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0180
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0180
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0185
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0185
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0190
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0190
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0195
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0195
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0200
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0200
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0200
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0200
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0210
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0210
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0210
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0215
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0215
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0215
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0220
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0220
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0220
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0225
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0225
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0230
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0230
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0230
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0235
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0235
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0235
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0240
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0240
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0240
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0245
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0245
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0245
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0250
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0250
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0250
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0250
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0255
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0255
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0260
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0260
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0265
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0265
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0265
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0270
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0270
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0270
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0275
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0275
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0280
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0280
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0280
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0285
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0285
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0285
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0290
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0290
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0290
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0295
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0295
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0300
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0300
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0300
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0305
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0305
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0305
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0310
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0310
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0310
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0310
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0310
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0315
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0315
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0315
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0315
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0315
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0320
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0320
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0320
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0320
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0320
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0320
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0325
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0325
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0325
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0330
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0330
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0330
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0335
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0335
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0335
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0340
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0340
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0340
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0345
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0345
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0345
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0345
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0350
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0350
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0355
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0355
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0360
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0360
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0360
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0365
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0365
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0370
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0370
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0370
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0375
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0375
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0375


S. Srihari et al. / FEBS Letters 589 (2015) 2590–2602 2601
[76] Ruan, P., Hayashida, M., Maruyama, O. and Akutsu, T. (2013) Prediction of
heterodimeric protein complexes from weighted protein–protein
interaction networks using novel features and kernel functions. PLoS One
8 (6), e65265.

[77] Ruan, P., Hayashida, M., Maruyama, O. and Akutsu, T. (2014) Prediction of
heterotrimeric protein complexes by two-phase learning using neighbouring
kernels. BMC Bioinformatics 15 (Suppl. 2), S6.

[78] Zaki, N. and Mora, A. (2014) A comparative analysis of computational
approaches and algorithms for protein subcomplex identification. Sci. Rep. 4,
4262.

[79] Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R. and
Ideker, T. (2003) Conserved pathways within bacteria and yeast as revealed
by global protein network alignment. Proc. Natl. Acad. Sci. USA 100, 11394–
11399.

[80] Sharan, R., Ideker, T., Kelley, B. and Shamir, R. (2005) Identification of protein
complexes by comparative analysis of yeast and bacterial protein interaction
data. J. Comput. Biol. 12 (6), 835–846.

[81] van Dam, J.P. and Snel, B. (2008) Protein complex evolution does not involve
extensive network rewiring. PLoS Comp. Biol. 4 (7), e1000132.

[82] Hirsh, E. and Sharan, R. (2007) Identification of conserved protein complexes
based on a model of protein network evolution. Bioinformatics 23 (2), e170–
e176.

[83] Marsh, J.A., Hernandenz, H., Hall, Z., Ahnhert, S.E., Perica, T., Robinson, C.V.
and Teichmann, S.A. (2013) Protein complexes are under evolutionary
selection to assemble via ordered pathways. Cell 153 (2), 461–470.

[84] Zhang, J., Zheng, F. and Grigoryan, G. (2014) Design and designability of
protein-based assemblies. Curr. Opin. Struct. Biol. 27, 79–86.

[85] Bork, P., Hoffman, K., Bucher, P., Neuwald, A.F., Alstchul, S.F. and Koonin, E.V.
(1997) A superfamily of conserved domains in DNA damage-responsive cell
cycle checkpoint proteins. FASEB J. 11 (1), 68–76.

[86] Lovell, S.C. and Robertson, D.L. (2010) An integrated view of molecular
coevolution in protein–protein interactions. Mol. Biol. Evol. 27 (11), 2567–
2575.

[87] de Juan, D., Pazos, F. and Valencia, A. (2013) Emerging methods in protein co-
evolution. Nat. Rev. Genet. 14, 249–261.

[88] Andreani, J. and Guerois, R. (2014) Evolution of protein interactions: from
interactomes to interfaces. Arc. Biochem. Biophys. 554, 65–75.

[89] Nurse PM. (2001). Cyclin dependent kinases and cell cycle control. Nobel
Lecture, December 9.

[90] Przytycka, T., Singh, M. and Slonim, D.K. (2010) Toward the dynamic
interactome: it’s about time. Brief Bioinf. 11 (1), 15–29.

[91] Han, J.D., Bertin, N., Hao, T., Goldberg, D.S., Berriz, G.F., Zhang, L.V., Dupuy, D.,
Walhout, A.J., Cusick, M.E., Roth, F.P. and Vidal, M. (2004) Evidence for
dynamically organized modularity in the yeast protein–protein interaction
network. Nature 430 (6995), 88–93.

[92] Batada, N.N., Reguly, T., Breitkreutz, A., Boucher, L., Breitkreutz, B.J., Hurst,
L.D. and Tyers, M. (2006) Stratus not altocumulus: a new view of the yeast
protein interaction network. PLoS Biol. 4 (10), e317.

[93] Agarwal, S., Deane, C.M., Porter, M.A. and Jones, N.S. (2010) Revisiting date
and party hubs: novel approaches to role assignment in protein interaction
networks. PLoS Comput. Biol. 6 (6), e1000817.

[94] Ning, K., Ng, H.K., Srihari, S., Leong, H.W. and Nesvizhskii, A.I. (2010)
Examination of the relationship between essential genes in PPI network and
hub proteins in reverse nearest neighbor topology. BMC Bioinformatics 11,
505.

[95] Komurov, K. and White, M. (2007) Revealing static and dynamic modular
architecture of the eukaryotic protein interaction network. Mol. Syst. Biol. 3,
110.

[96] de Lichtenberg, U., Jensen, L.J., Brunak, S. and Bork, P. (2005) Dynamic
complex formation during the yeast cell cycle. Science 307 (5710). 727-7.

[97] Srihari, S. and Leong, H.W. (2012) Temporal dynamics of protein complexes
in PPI networks: a case study using yeast cell-cycle complexes. BMC
Bioinformatics 13 (Suppl. 17), S16.

[98] Li, M., Chen, W., Wang, J., Wu, F.-X. and Pan, Y. (2014) Identifying dynamic
protein complexes based on gene expression profiles and PPI networks.
BioMed. Res. Inter. 22, 375262.

[99] Ou-Yang, L., Dai, D.Q., Li, X.L., Wu, M., Zhang, X.F. and Yang, P. (2014)
Detecting temporal protein complexes from dynamic protein–protein
interaction networks. BMC Bioinformatics 15, 335.

[100] Goh, W., Oikawa, H., Sng, J., Sergot, M. and Wong, L. (2012) The role of
miRNAs in complex formation and control. Bioinformatics 28 (4), 453–456.

[101] Kim, P.M., Lu, L.J., Xia, Y. and Gerstein, M.B. (2006) Relating three-
dimensional structures to protein networks provides evolutionary insights.
Science 314, 1938–1941.

[102] Mosca, R., Ceol, A. and Aloy, P. (2013) Interactome3D: adding structural
details to protein networks. Nat. Methods 10, 47–53.

[103] Russel, D., Lasker, K., Webb, B., Velazquez-Muriel, J., Tjioe, E., Schneidman-
Duhovny, D., Peterson, B. and Sali, A. (2012) Putting the pieces together:
integrative modeling platform software for structure determination of
macromolecular assemblies. PLoS Biol. 10, e1001244.

[104] Sacquin-Mora, S., Carbone, A. and Lavery, R. (2008) Identification of protein
interaction partners and protein–protein interaction sites. J. Mol. Biol. 382,
1276–1289.

[105] Yoshikawa, T., Tsukamoto, K., Hourai, Y. and Fukui, K. (2009) Improving the
accuracy of an affinity prediction method by using statistics on shape
complementarity between proteins. J. Chem. Inf. Model. 49, 693–703.
[106] Lopes, A., Sacquin-Mora, S., Dimitrova, V., Laine, E., Ponty, Y. and Carbone, A.
(2013) Protein–protein interactions in a crowded environment: an analysis
via cross-docking simulations and evolutionary information. PLoS Comput.
Biol. 9, e1003369.

[107] Kastritis, P.L. and Bonvin, A.M. (2010) Are scoring functions in protein–
protein docking ready to predict interactomes? Clues from a novel binding
affinity benchmark. J. Proteome Res. 9, 2216–2225.

[108] Andrusier, N., Mashiach, E., Nussinov, R. and Wolfson, H.J. (2008) Principles
of flexible protein–protein docking. Proteins 73, 271–289.

[109] de Vries, S. and Zacharias, M. (2013) Flexible docking and refinement with a
coarse-grained protein model using ATTRACT. Proteins 81, 2167–2174.

[110] Torchala, M., Moal, I.H., Chaleil, R.A., Fernandez-Recio, J. and Bates, P.A.
(2013) SwarmDock: a server for flexible protein–protein docking.
Bioinformatics 29, 807–809.

[111] Kozakov, D., Beglov, D., Bohnuud, T., Mottarella, S.E., Xia, B., Hall, D.R. and
Vajda, S. (2013) How good is automated protein docking? Proteins 81, 2159–
2166.

[112] Marsh, J.A., Teichmann, S.A. and Forman-Kay, J.D. (2012) Probing the diverse
landscape of protein flexibility and binding. Curr. Opin. Struct. Biol. 22, 643–
650.

[113] Hegyi, H., Schad, E. and Tompa, P. (2007) Structural disorder promotes
assembly of protein complexes. BMC Struct. Biol. 7, 65.

[114] Marsh, J.A. and Teichmann, S.A. (2014) Protein flexibility facilitates
quaternary structure assembly and evolution. PLoS Biol. 12, e1001870.

[115] Mittag, T., Kay, L.E. and Forman-Kay, J.D. (2010) Protein dynamics and
conformational disorder in molecular recognition. J. Mol. Recognit. 23, 105–
116.

[116] Wright, P.E. and Dyson, H.J. (1999) Intrinsically unstructured proteins: re-
assessing the protein structure-function paradigm. J. Mol. Biol. 293, 321–331.

[117] Wright, P.E. and Dyson, H.J. (2015) Intrinsically disordered proteins in
cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16, 18–29.

[118] Patil, A., Kinoshita, K. and Nakamura, H. (2010) Hub promiscuity in protein–
protein interaction networks. Int. J. Mol. Sci. 11, 1930–1943.

[119] Dunker, A.K., Cortese, M.S., Romero, P., Iakoucheva, L.M. and Uversky, V.N.
(2005) Flexible nets. FEBS J. 272, 5129–5148.

[120] Patil, A. and Nakamura, H. (2006) Disordered domains and high surface
charge confer hubs with the ability to interact with multiple proteins in
interaction networks. FEBS Lett. 580, 2041–2045.

[121] Tompa, P. and Fuxreiter, M. (2008) Fuzzy complexes: polymorphism and
structural disorder in protein–protein interactions. Trends Biochem. Sci. 33,
2–8.

[122] Sugase, K., Dyson, H.J. and Wright, P.E. (2007) Mechanism of coupled folding
and binding of an intrinsically disordered protein. Nature 447, 1021–1025.

[123] Russo, A.A., Jeffrey, P.D., Patten, A.K., Massague, J. and Pavletich, N.P. (1996)
Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to
the cyclin A-Cdk2 complex. Nature 382, 325–331.

[124] Lacy, E.R., Filippov, I., Lewis, W.S., Otieno, S., Xiao, L., Weiss, S., Hengst, L. and
Kriwacki, R.W. (2004) P27 binds cyclin-CDK complexes through a sequential
mechanism involving binding-induced protein folding. Nat. Struct. Mol. Biol.
11, 358–364.

[125] Otieno, S. and Kriwacki, R. (2012) Probing the role of nascent helicity in p27
function as a cell cycle regulator. PLoS One 7, e47177.

[126] Fuxreiter, M. and Tompa, P. (2012) Fuzzy complexes: a more stochastic view
of protein function. Adv. Exp. Med. Biol. 725, 1–14.

[127] Marsh, J.A., Dancheck, B., Ragusa, M.J., Allaire, M., Forman-Kay, J.D. and Peti,
W. (2010) Structural diversity in free and bound states of intrinsically
disordered protein phosphatase 1 regulators. Structure 18, 1094–1103.

[128] Mittag, T., Marsh, J., Grishaev, A., Orlicky, S., Lin, H., Sicheri, F., Tyers, M. and
Forman-Kay, J.D. (2010) Structure/function implications in a dynamic
complex of the intrinsically disordered Sic1 with the Cdc4 subunit of an
SCF ubiquitin ligase. Structure 18, 494–506.

[129] Nguyen Ba, A.N., Yeh, B.J., van Dyk, D., Davidson, A.R., Andrews, B.J., Weiss,
E.L. and Moses, A.M. (2012) Proteome-wide discovery of evolutionary
conserved sequences in disordered regions. Sci. Signal. 5, rs1.

[130] Mohan, A., Oldfield, C.J., Radivojac, P., Vacic, V., Cortese, M.S., Dunker, A.K.
and Uversky, V.N. (2006) Analysis of molecular recognition features (MoRFs).
J. Mol. Biol. 362, 1043–1059.

[131] Davey, N.E., Cowan, J.L., Shields, D.C., Gibson, T.J., Coldwell, M.J. and Edwards,
R.J. (2012) SLiMPrints: conservation-based discovery of functional motif
fingerprints in intrinsically disordered protein regions. Nucleic Acids Res. 40,
10628–10641.

[132] Meszaros, B., Simon, I. and Dosztanyi, Z. (2009) Prediction of protein binding
regions in disordered proteins. PLoS Comput. Biol. 5, e1000376.

[133] Disfani, F.M., Hsu, W.L., Mizianty, M.J., Oldfield, C.J., Xue, B., Dunker, A.K.,
Uversky, V.N. and Kurgan, L. (2012) MoRFpred, a computational tool for
sequence-based prediction and characterization of short disorder-to-order
transitioning binding regions in proteins. Bioinformatics 28, i75–i83.

[134] Jones, D.T. and Cozzetto, D. (2014) DISOPRED3: precise disordered region
predictions with annotated protein-binding activity. Bioinformatics 31 (6),
857–863.

[135] Malhis, N. and Gsponer, J. (2015) Computational Identification of MoRFs in
Protein Sequences. Bioinformatics, http://dx.doi.org/10.1093/bioinformatics/
btv060.

[136] Varadi, M., Kosol, S., Lebrun, P., Valentini, E., Blackledge, M., Dunker, A.K.,
Felli, I.C., Forman-Kay, J.D., Kriwacki, R.W., Pierattelli, R., Sussman, J., Svergun,
D.I., Uversky, V.N., Vendruscolo, M., Wishart, D., Wright, P.E. and Tompa, P.

http://refhub.elsevier.com/S0014-5793(15)00284-7/h0380
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0380
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0380
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0380
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0385
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0385
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0385
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0390
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0390
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0390
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0395
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0395
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0395
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0395
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0400
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0400
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0400
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0405
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0405
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0410
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0410
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0410
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0415
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0415
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0415
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0420
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0420
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0425
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0425
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0425
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0430
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0430
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0430
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0435
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0435
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0440
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0440
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0450
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0450
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0455
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0455
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0455
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0455
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0460
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0460
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0460
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0465
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0465
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0465
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0470
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0470
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0470
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0470
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0475
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0475
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0475
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0480
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0480
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0485
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0485
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0485
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0490
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0490
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0490
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0495
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0495
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0495
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0500
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0500
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0505
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0505
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0505
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0510
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0510
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0515
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0515
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0515
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0515
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0520
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0520
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0520
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0525
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0525
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0525
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0530
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0530
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0530
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0530
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0535
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0535
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0535
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0540
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0540
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0545
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0545
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0550
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0550
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0550
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0555
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0555
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0555
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0560
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0560
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0560
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0565
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0565
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0570
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0570
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0575
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0575
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0575
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0580
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0580
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0585
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0585
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0590
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0590
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0595
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0595
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0600
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0600
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0600
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0605
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0605
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0605
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0610
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0610
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0615
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0615
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0615
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0620
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0620
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0620
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0620
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0625
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0625
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0630
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0630
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0635
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0635
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0635
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0640
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0640
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0640
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0640
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0645
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0645
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0645
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0650
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0650
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0650
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0655
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0655
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0655
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0655
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0660
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0660
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0665
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0665
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0665
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0665
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0670
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0670
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0670
http://dx.doi.org/10.1093/bioinformatics/btv060
http://dx.doi.org/10.1093/bioinformatics/btv060
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0680
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0680
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0680


2602 S. Srihari et al. / FEBS Letters 589 (2015) 2590–2602
(2014) PE-DB: a database of structural ensembles of intrinsically disordered
and of unfolded proteins. Nucleic Acids Res. 42, D326–D335.

[137] Barabási, A.L., Gulbahce, N. and Loscalzo, J. (2011) Network medicine: a
network-based approach to human disease. Nat. Rev. Genet. 12 (1), 56–68.

[138] Lage, K. (2014) Protein–protein interactions and genetic diseases: the
interactome. Biochim. Biophys. Acta (BBA) 1842 (10), 1971–1980.

[139] Vanunu, O., Magger, O., Ruppin, E., Shlomi, T. and Sharan, R. (2010)
Associating genes and protein complexes with disease via network
propagation. PLoS Comput. Biol. 6 (1), e1000641.

[140] Hamosh, A., Scott, A.F., Amberger, J.S., Bocchini, C.A. and McKusick, V.A.
(2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of
human genes and genetic disorders. Nucleic Acids Res. 33 (Database), D514–
D517.

[141] Lage, K., Karlberg, E.O., Størling, Z.M., Olason, P.I., Pedersen, A.G., Rigina, O.,
Hinsby, A.M., Tümer, Z., Pociot, F., Tommerup, N., Moreau, Y. and Brunak, S.
(2007) A human phenome-interactome network of protein complexes
implicated in genetic disorders. Nat. Biotechnol. 25 (3), 309–316.

[142] Paolo, A.D., Racca, C., Calsou, P. and Larminat, F. (2014) Loss of BRCA1 impairs
centromeric cohesion and triggers chromosomal instability. FASEB J. 28 (12),
5250–5261.
[143] Liu, C., Srihari, S., Lê Cao, K.-A., Chevenix-Trench, G., Simpson, P.T., Ragan,
M.A. and Khanna, K.K. (2014) A fine-scale dissection of the DNA double-
strand break repair machinery and its implications for breast cancer therapy.
Nucleic Acids Res. 42 (10), 6106–6127.

[144] Srihari, S., Madhamshettiwar, P.B., Song, S., Liu, C., Simpson, P.T., Khanna, K.
and Ragan, M.A. (2014) Complex-based analysis of dysregulated cellular
processes in cancer. BMC Syst. Biol. 8 (Suppl. 4), S1.

[145] Zhao, J., Lee, S.H., Huss, M. and Holme, P. (2013) The network organization of
cancer-associated protein complexes in human tissues. Sci. Rep. 3, 1583.

[146] Chen, Y., Jacquemin, T., Zhang, S. and Jiang, R. (2014) Prioritizing protein
complexes implicated in human diseases by network optimization. BMC
Syst. Biol. 8 (Suppl. 1), S2.

[147] Goh, W., Lee, Y.H., Ramdzan, Z., Sergot, M., Chung, M. and Wong, L. (2012)
Proteomics Signature Profiling (PSP): a novel contextualization approach for
cancer proteomics. J. Proteome Res. 11 (3), 1571–1581.

[148] Goh, W., Fan, M., Low, H.S., Segot, M. and Wong, L. (2013) Enhancing the utility
of Proteomics Signature Profiling (PSP) with Pathway Derived Subnets (PDSs),
performance analysis and specialised ontologies. BMC Genomics 14, 35.

[149] Kalaev, M., Smoot, M., Ideker, T. and Sharan, R. (2008) NetworkBLAST:
comparative analysis of protein networks. Bioinformatics 24 (4), 594–596.

http://refhub.elsevier.com/S0014-5793(15)00284-7/h0680
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0680
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0685
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0685
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0690
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0690
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0695
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0695
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0695
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0700
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0700
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0700
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0700
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0705
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0705
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0705
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0705
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0710
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0710
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0710
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0715
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0715
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0715
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0715
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0720
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0720
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0720
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0725
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0725
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0730
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0730
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0730
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0735
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0735
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0735
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0740
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0740
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0740
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0745
http://refhub.elsevier.com/S0014-5793(15)00284-7/h0745

	Methods for protein complex prediction and their contributions towards understanding the organisation, function and dynamics of complexes
	1 Introduction
	2 Review of methods for complex prediction from PPI networks
	2.1 Methods based solely on network clustering
	2.1.1 Molecular COmplex Detection (MCODE)
	2.1.2 Markov Clustering (MCL)
	2.1.3 Clustering based on merging Maximal Cliques (CMC)
	2.1.4 Clustering with Overlapping Neighbourhood Expansion (ClusterONE)
	2.1.5 Hierarchical Agglomerative Clustering with Overlaps (HACO)
	2.1.6 Ensemble clustering

	2.2 Methods based on network clustering combined with biological insights
	2.2.1 Methods incorporating core-attachment structure
	2.2.2 Methods incorporating functional information

	2.3 Comparative assessment of complex detection methods
	2.4 Open challenges in complex detection
	2.4.1 Detection of sparse complexes
	2.4.2 Discerning overlapping complexes
	2.4.3 Detection of small complexes

	2.5 Detecting evolutionarily conserved complexes

	3 Integrating contextual information with PPI networks for predicting dynamic protein complexes
	3.1 Identifying temporal complexes
	3.2 Integrating structural information with PPI networks
	3.2.1 Flexibility and intrinsic disorder in protein complexes
	3.2.2 Fuzzy complexes
	3.2.3 Binding interface and complex prediction


	4 Identifying complexes in human diseases
	5 Conclusion
	Acknowledgement
	References


